Рефлекторные дуги спинного мозга. Рефлекс и рефлекторная дуга

Вопросы к тематическому контролю по теме «Нервная система»

1. Нервные узлы образованы:

а) аксонами б) телами нейронов в) нервами г) дендритами

2. Нервный импульс - это результат:

а) только электрических процессов, происходящих в клетках

б) химических процессов в) электрохимических или электрических процессов

3. Нервный импульс вызывает в соседнем нейроне:

а) возбуждение б) торможение в) возбуждение или торможение

4. Функция торможения заключается в том, что оно:

а) задерживает распространение возбуждения б) ускоряет проведение нервного импульса

в) изменяет направление импульса

5. Возбуждение от ЦНС к органу или железам передается по:

а) чувствительным нейронам б) исполнительным нейронам в) вставочным нейронам

6. Серое вещество мозга образовано :

а) длинными отростками нейронов б) короткими отростками

в) телами и короткими отростками г) всеми перечисленными образованиями

7. Нервный импульс в синапсе передается :

а)в двух направлениях(туда и обратно) б)в одном направлении в)во многих направлениях

8. При ожоге возбуждение возникает :

а) в теле исполнительного нейрона б) в рецепторе чувствительного нейрона

в) в теле чувствительного нейрона г) во вставочных нейронах



9. В каком случает слюноотделение у человека будет безусловно-рефлекторной реакцией? а) при ощущении запаха мяса б) при разговоре о еде

в) во время еды г) при виде любимого блюда

Какой из раздражителей не вызывает безусловно рефлекторной реакции?

а) текст книги б) нехватка воздуха для дыхания в) прием пищи

11. Дуги какого из названных рефлексов постоянны?

а) поддержание равновесия при езде на велосипеде б) выделение слюны при виде пищи

в) выделение желудочного осока во время еды

12. Выберите признаки условных рефлексов :

а) индивидуальные б) не имеют готовых рефлекторных дуг в) видовые г) непостоянные

д) врожденные е) постоянные ж) осуществляются на любое раздражение з) имеют готовые рефлекторные дуги и)многие - спинномозговые к) осуществляются только при участии коры головного мозга л) приобретенные

13. Выберите правильные утверждения :

д) синонимом понятия чувствительный нейрон является понятие - центростремительные нейроны

е) тела вставочных нейронов расположены в ЦНС

ж) условные рефлексы характерны для всех особей вида

з) рефлекторные дуги безусловных рефлексов постоянны и передаются по наследству

14. Спинномозговые нервные узлы находятся

а) в задних корешках спинного мозга б) в передних корешках в) в нервных окончаниях

15. Какова функция вставочных нейронов спинного мозга?

а) восприятие раздражения б) осуществление связи с отделами ЦНС

в) проведение возбуждения к мышцам

16. Ядра парасимпатических волокон находятся :

а)в среднем и продолговатом мозге б)в промежуточном мозге

в) в среднем,продолговатом мозге в спинном мозге

17. Существование условных рефлексов открыл :

а) И.П.Павлов б)И.М.Сеченов в)П.К.Анохин

18. Каким из рефлексов управляет крестцовый отдел спинного мозга?

а) коленным рефлексом б) отдергиванием руки при ожоге в) дыхательным рефлексом

19. Центральная нервная система образована:

а) головным и спинным мозгом б) головным мозгом и черепно-мозговыми нервами

в) спинным мозгом и спинномозговыми нервами г) нервами, нервными сплетениями и узлами

20. Основными свойствами нервной клетки являются :

а) сократимость и проводимость б)возбудимость и сократимость в)возбудимость и проводимость

21. Периферическая нервная система состоит из:

а) спинного и головного мозга б) спинного мозга и отходящих от него нервов

в) черепно-мозговых нервов г) нервов, нервных сплетений, узлов

22. Импульсы от органа в мозг проводят :

а) чувствительные нейроны б) двигательные нейроны

в) вставочные нейроны г) все указанные нейроны

23. Что называется синапсом:

а) отросток нейрона б) контакт между нейронами

в) нервные узлы г) нервные сплетения

24. Каким будет результат повреждения чувствительных нервных волокон, иннервирующх палец руки?

а) человек не сможет двигать этим пальцем б) человек не почувствует боли от ожога пальца

в) человек не сможет ни чувствовать, ни совершать движения эти пальцем.

25. Нейрон имеет:

а) один аксон и один или несколько дендритов б) несколько аксонов и несколько дендритов

в) один дендрит и несколько аксонов

В каком случае правильно обозначена дуга спинномозгового рефлекса?

а) рецептор - исполнительный нейрон - вставочный нейрон – чувствительный нейрон - мышца

б) мышца - рецептор - чувствительный нейрон - исполнительный нейрон - вставочный нейрон

в) рецептор - чувствительный нейрон - вставочный нейрон - исполнительный нейрон - мышца

27. Простейшая рефлекторная дуга образована :

а) тремя нейронами б) двумя нейронами в) одним нейроном

28. Какой из перечисленных рефлексов относится к условным

а) отдергивание руки при уколе пальца б) переход автодороги с осторожностью

в) строительство гнезда птицами

Каждый спинальный рефлекс состоит из трех звеньев: афферентного, центрального, или воспринимающего, и эфферентного. В спинном мозгу афферентное звено состоит из периферических нейронов чувствительности. Клетки этих нейронов у позвоночных находятся за пределами спинного мозга и только у простейших хордовых еще располагаются внутри спинного мозга. Такого рода устройство у позвоночных, по-видимому, защищает слабые импульсы, возникающие в рецепторах и проходящие по периферическому отростку клетки межпозвоночного узла, от подавления электрической активностью спинного мозга . Эти слабые волны вызывают возбуждение в клетке за счет ее потенциальной энергии. В таком усиленном виде импульсы вступают в корешок и достигают следующего нейрона.

Периферический, или первый, нейрон чувствительности, называемый также протонейроном, является началом рефлекторной дуги не только спинного мозга, но и разных уровней головного мозга. Например, афферентная часть рефлекторной дуги, достигающая мозговой коры, состоит из цепи 3 нейронов.

Воспринимающей, или центральной, частью рефлексов спинного мозга являются задние рога. Эфферентной частью служат двигательные и симпатические клетки переднего и бокового рогов спинного мозга. Их аксоны выходят из спинного мозга в виде передних корешков.

Состав афферентной части рефлекторной дуги спинного мозга . В коже располагаются рецепторы, каждый из которых чувствителен к определенным раздражителям. Одни рецепторы возбуждаются прикосновением (тактильная чувствительность), другие - теплом (тепловая чувствительность), третьи - холодом (холодовая чувствительность), четвертые - повреждением ткани, чем бы оно ни было вызвано (болевая чувствительность). Так как для каждого из этих раздражителей существуют специальные рецепторы, то имеются и соответствующие категории периферических нейронов кожной чувствительности. Перечисленные нейроны кожной чувствительности характеризуются общим свойством: их периферические, отростки в коже имеют большое количество разветвлений, волокна одного сегмента перекрывают вверх и вниз зоны соседних сегментов. Таким образом, раздражитель, действуя на один пункт, вызывает возбуждение (в убывающем порядке) рецепторов и соседних сегментов, а прохождению раздражения по рецепторам соответствует перемещение его по серому веществу спинного мозга, куда эти возбуждения доходят. Таким веществом в спинном мозгу является роландово желатинозное вещество. Желатинозная субстанция - это проекция кожи в спинной мозг, причем каждому пункту сожи соответствует определенный пункт в субстанции. Однако точное соответствие между кожей и желатинозной субстанцией достигается отнюдь не отдельными проводниками между отдельными пунктами, а сложными динамическими процессами взаимодействия между элементами желатинозной субстанции. Это подтверждается прежде всего тем, что каждое волокно периферического нерва кожной чувствительности проецируется по многим пунктам желатинозной субстанции. Таким образом, перши фазой процесса, вызванного импульсом с заднего корешка, является иррадиация возбуждения по субстанции. Тем не менее, если при дальнейшей передаче импульса сохраняется точечная локализация, то это может быть следствием смены фазы иррадиации возбуждения фазой концентрации.

Таким образом, желатинозное вещество является представительством кожи в ее пространственных параметрах в отношении тактильной, тепловой, холодовой И болевой чувствительности. Это тип кожной, или экстероцептивной или поверхностной, чувствительности.

В мышцах, сухожилиях имеются рецепторы, которые возбуждаются растяжением мышц и их сухожилий. Оканчивающиеся в этих так называемых проприорецепторах периферические волокна протонейрона чувствительности не захватывают одновременно функционально различных мышечных групп, например сгибателей и разгибателей. Наоборот, они совершенно раздельны, поскольку раздельна и противоположна деятельность сгибательной и разгибательной мышечной группы, да и в пределах этой группы требуется раздельная сигнализация растяжения каждого мышечного пучка. Этот вид чувствительности носит название глубокой, или мышечно-суставной, или проприоцептивной.

Корешковые волокна нейронов глубокой чувствительности при входе в спинной мозг минуют желатинозную субстанцию. Они и составляют задние столбы, проводящие глубокую чувствительность в головной мозг.

От основных ветвей - восходящей и нисходящей, на которые делится волокно глубокой чувствительности, на всем протяжении спинного мозга отходят рефлекторные коллатерали к клеткам передних рогов спинного мозга. Через них осуществляется самая короткая связь между периферическим нейроном глубокой чувствительности и периферическим двигательным нейроном. Так замыкается самая короткая рефлекторная дуга собственного рефлекса мышцы с ее проприорецептора до окончания в ней двигательного волокна (рефлекс на растяжение, миотатический рефлекс, сухожильный рефлекс).

Как уже было сказано, желатинозная субстанция представляет кожу в отношении кожной чувствительности. Однако тактильная чувствительность проводится двумя путями. Более элементарные тактильные раздражения проводятся путями кожной чувствительности через желатинозную субстанцию. Более сложные тактильные раздражения проводятся от рецепторов кожи вместе с волокнами глубокой чувствительности (по задним столбам, минуя желатинозную субстанцию). Именно здесь лежит путь, определяющий способность тонкого и точного различения (дискриминации) пространственных отношений прикосновения. Эти рецепторы кожи распределены неравномерно. Они очень густо расположены на ладонной поверхности кисти, особенно на ногтевых фалангах, и значительно реже представлены на коже спины. Благодаря их наличию можно при закрытых глазах одновременно различать прикосновения к двум точкам кожи (дискриминационная чувствительность), точно локализовать раздражение (чувство локализации), распознать, какая фигура (треугольник, крест, круг, цифра, буква) начерчена штрихом на коже больного (двумерно-пространственная чувствительность), определить степень давления на кожу. Это гак Называемые сложные виды чувствительности. Хотя ми виды сложной чувствительности относятся к кожной чувствительности (тактильной), она, как уже было сказано, проводится в спинном мозгу, как и проприоцептивная, т. е. минуя желатинозную субстанцию, через задние столбы. Через последние осуществляется также вибрационная чувствительность. Из того факта, что тактильная чувствительность проводится по двум путям, главным образом по путям глубокой чувствительности, не заходящим в задний рог, становится понятным, что при поражении последнего, а также белой спайки и спино-таламического пучка страдает в основном болевая и температурная чувствительность. Тактильная же чувствительность при этом практически сохраняется (диссоциированный тип расстройства чувствительности).

Интероцептивная чувствительность, т. е. чувствительность из внутренних органов, осуществляется при помощи симпатической системы и системы блуждающего нерва. В спинной мозг импульсы из внутренних органов вступают через задние корешки. Здесь эти импульсы проводятся главным образом по проводникам кожной чувствительности (не только противоположной, но и той же стороны), но, по всей вероятности, также и по задним столбам и коротким волокнам, прерывающимся повторно в сером веществе спинного мозга.

Таким образом, афферентная часть спинальной рефлекторной дуги, помимо экстероцептивной и проприоцептивной, осуществляет также интероцептивную чувствительность.

Наличие в составе афферентной части спинальной рефлекторной дуги также проводников чувствительности от внутренних органов делает понятным установленный в клинике факт, что при заболеваниях внутренних органов часто наблюдается гиперестезия в кожных сегментах, соответствующих сегментам спинного мозга, в которые поступают чувствительные волокна из пораженного внутреннего органа (зоны Захарьина-Геда).

Механизм появления гиперестетических зон представляется следующим: болевые раздражения от внутренних органов через симпатические волокна поступают сначала в пограничную симпатическую цепочку, а затем через соединительные ветви в задние корешки и спинной мозг. Это возбуждение проецируется в те области кожи, которые связаны с этими сегментами.

Возможна и обратная передача: при процессах на поверхности тела иногда возникают боли во внутренних органах. Зоны Захарьина - Геда могут проецироваться не только в зависимости от симпатической иннервации органа, но и от парасимпатической (вагусной) его иннервации, поскольку чувствительность некоторых внутренних органов связана с блуждающим нервом. Чувствительное ядро блуждающего нерва имеет связь с ядром тройничного нерва и задним рогом спинного мозга второго шейного сегмента. Поэтому зоны гиперестезии, стоящие в связи с висцеро-сенсорным рефлексом по путям блуждающего и тройничного нервов, локализуются также в области лица, шеи и головы. При заболеваниях внутренних органов боли могут проецироваться на коже также в зависимости от связи органа с диафрагмальным нервом. Так как ядро диафрагмального нерва расположено в III-IV шейном сегменте спинного мозга, то участки гиперестезии могут локализоваться в участках кожи, связанных с этими сегментами (область надплечья и нижнего отдела шеи).

Для обнаружения зон гиперестезии и установления их границ прибегают к сжатию пальцами кожной складки, прикладыванию пробирки с теплой водой. Эти манипуляции вызывают в области зон ощущения жжения, иногда боли, отсутствующие в участках с нормальной чувствительностью.

Состав эфферентной части рефлекторной дуги спинного мозга . Аксоны двигательных клеток передних рогов спинного мозга выходят из спинного мозга в составе переднего корешка, а затем смешанного спинномозгового нерва, достигают соответствующей скелетной мышцы, в которой и оканчиваются. Этот нейрон называется периферическим двигательным нейроном. Он иннервирует группу мышечных волокон, число которых достигает 160. Каждый периферический двигательный нейрон вместе с его мышечными волокнами составляет единицу исполнительного звена рефлекторной дуги. Если гибнет нервная клетка или мышца утрачивает связь с нею, то она, лишившись возможности сокращаться, постепенно атрофируется.

Импульсы к движениям, осуществляемые скелетной мускулатурой, из какого бы уровня нервной системы они ни направлялись, не могут миновать периферического двигательного нейрона. Он является конечным путем рефлексов, осуществляемых скелетной мускулатурой.
В боковых рогах спинного мозга и боковых частях передних рогов располагаются симпатические клетки, аксоны которых выходят из спинного мозга в составе передних корешков. Симпатические клетки в спинном мозгу сосредоточены главным образом в грудном отделе (от VIII шейного до I-IV поясничного позвонка).

Пограничные стволы располагаются на передней поверхности поперечных отростков позвонков и образуют цепочку узлов, соединенных продольными волокнами. В поясничной и крестцовой областях правый и левый стволы соединены поперечными пучками волокон. Всего таких узлов у человека 20-25. В шейной части различают 3 узла: верхний, средний и нижний. К последнему иногда присоединяется средний шейный и первый грудной. Этот объединенный узел называется звездчатым. В грудном отделе пограничного ствола 11 узлов, из которых первый, как уже сказано, входит в состав звездчатого узла. В поясничном отделе 2-8 узлов, в крестцовом - 3 парных, а на передней поверхности копчика - один непарный.

От клеток симпатических узлов отходят безмякотные волокна, часть которых через rami communicantes grisei присоединяется к периферическим нервам, с которыми достигает места назначения. Другая часть образует пучки симпатических волокон, которые направляются к внутренним органам, входя в состав висцеральных сплетений. Волокна, берущие начало в узлах пограничных стволов, называются постганглионарными.

Симпатическая система участвует в рефлексах спинного мозга, когда необходимо привести в действие гладкие мышцы и железы, которые возбуждаются изменением окружающей их среды. Процесс протекает медленно, гораздо медленнее, чем сокращаются скелетные мышцы. В связи с этим скорости возбуждения, которые присущи нейронам центральной нервной системы, в том числе симпатическим клеткам спинного мозга, не соответствуют скоростям возбуждения гладких мышц и желез. Очевидно поэтому в конечный симпатический путь включен второй нейрон, клетка которого находится в узле пограничного ствола. Эти клетки отвечают не на единичный быстрый импульс, а только на ряд их. Они обладают скоростью возбуждения, соответствующей скорости возбуждения гладких мышц и желез. Таким образом, конечный симпатический путь отличается от конечного двигательного тем, что состоит из двух последовательных нейронов.

Есть и другое существенное различие между ними, состоящее в том, что периферический двигательный нейрон всегда непосредственно связан со скелетной мышцей. Конечный симпатический путь только частично достигает эффектора, а в значительной части влияет на местные нервные образования в виде сплетений на поверхности и в самих внутренних органах.

Конечный симпатический путь не только иннервирует гладкие мышцы и железы, но изменяет функциональные свойства скелетных мышц и протонейронов чувствительности. В мышцах наряду с окончаниями двигательного нейрона имеются окончания симпатического конечного пути.

Это влияние на функциональные свойства эффектора называется трофическим, так как дело заключается в изменении обмена. Наконец, к числу эффекторов, на которые импульсы передаются через симпатический конечный путь, относятся железы внутренней секреции и прежде всего надпочечники, через которые в свою очередь осуществляется воздействие на все чувствительные клетки.

Такое универсальное участие симпатического конечного пути но всех функциях организма объясняется тем, что через симпатическую систему (кроме ее участия в местных рефлексах одновременно с периферическим двигательным нейроном) осуществляется постоянное приспособление органов к выполняемой в данный момент деятельности. Это приспособление называется адаптацией. Через симпатическую систему с ее гуморальными эффекторами осуществляется приспособление всей внутренней деятельности к внешней. Здесь подчеркнуто слово «через», так как симпатическая система является только конечным путем рефлекторной деятельности головного и спинного мозга, а адаптационные импульсы возникают в тех же рефлекторных центрах, что и импульсы к действиям посредством скелетной мускулатуры.

Такова общая схема рефлекторной дуги спинного мозга. Через эту дугу осуществляются многие рефлексы спинного мозга, из которых будут описаны основные.

Новейшие физиологические изыскания установили морфологическую и функциональную неоднородность клеток передних рогов. Различают три типа клеток: Альфа-большие, Альфа-малые и y-клетки. Особый интерес представляет открытие мотонейронов, которые прямых двигательных актов не совершают, а связаны с проприоцепторами «мышечными веретенами». Они осуществляют, помимо центрального, и периферический контроль за состоянием мышечного тонуса. Таким образом на смену представлению о рефлекторной дуге приходит представление о рефлекторном круге.

второе высшее образование "психология" в формате MBA

предмет: Анатомия и эволюция нервной системы человека.

Методичка "Анатомия центральной нервной системы"


6.2. Внутреннее строение спинного мозга

6.2.1. Серое вещество спинного мозга
6.2.2. Белое вещество

6.3. Рефлекторные дуги спинного мозга

6.4. Проводящие пути спинного мозга

6.1. Общий обзор спинного мозга
Спинной мозг лежит в позвоночном канале и представляет собой тяж длиной 41 - 45 см (у взрослого человека среднего роста. Он начинается на уровне нижнего края большого затылочного отверстия, где выше расположен головной мозг. Нижняя часть спинного мозга сужается в виде конуса спинного мозга.

Вначале, на втором месяце внутриутробной жизни, спинной мозг занимает весь позвоночный канал, а затем вследствие более быстрого роста позвоночника отстает в росте и перемещается вверх. Ниже уровня окончания спинного мозга находится терминальная нить, окруженная корешками спинномозговых нервов и оболочками спинного мозга (рис. 6.1).

Рис. 6.1. Расположение спинного мозга в спинномозговом канале позвоночника :

Спинной мозг имеет два утолщения: шейное и поясничное, В этих утолщениях находятся скопления нейронов, иннервирующих конечности, и из этих утолщений выходят нервы, идущие к рукам и ногам. В поясничном отделе корешки идут параллельно концевой нити и образуют пучок, носящий название конского хвоста.

Передней срединной щелью и задней срединной бороздкой спинной мозг делится на две симметричные половины. Эти половины, в свою очередь, имеют по две слабовыраженные продольные борозды, из которых выходят передние и задние корешки, формирующие затем спинномозговые нервы. Благодаря наличию борозд каждая из половин спинного мозга разделена на три испольных тяжа, называемых канатиками: передний, боковой и задний. Между передней срединной щелью и переднебоковой бороздой (местом выхода передних корешков спинного мозга) с каждой стороны находится передний канатик. Между переднебоковой и заднебоковой бороздами (вход задних корешков) на поверхности правой и левой сторон спинного мозга формируется боковой канатик. Позади заднебоковой борозды, по бокам от задней срединной борозды, находится задний канатик спинного мозга (рис. 6.2).

Рис. 6.2. Канатики и корешки спинного мозга:

1 - передние канатики;
2 — боковые канатики;
3 — задние канатики;
4 — серое ещество;
5 — передние корешки;
6 — задние корешки;
7 — спинномозговые нервы;
8 — спинномозговые узлы

Участок спинного мозга, соответствующий двум парам корешков спинномозговых нервов (двум передним и двум задним, по одному с каждой стороны), называют сегментом спинного мозга.Различают 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый сегмент (всего 31 сегмент).

Передний корешок образован аксонами двигательных (моторных) нейронов. По нему нервные импульсы направляются от спинного мозга к органам. Именно поэтому он «выходит». Задний корешок, чувствительный, образован совокупностью аксонов псевдоунинолярнмх нейронов, чьи тела образуют спинномозговой узел, располагающийся в позвоночном канале за пределами ЦН С. По этому корешку в спинной мозг поступает информация от внутренних органов. Поэтому этот корешок «входит». На протяжении спинного мозга с каждой стороны имеется 31 пара корешков, образующих 31 пару спинномозговых нервов.

6.2. Внутреннее строение спинного мозга

Спинной мозг состоит из серого и белого вещества. Серое вещество со всех сторон окружено белым, т. е. тела нейронов со всех сторон окружены проводящими путями.

6.2.1. Серое вещество спинного мозга

В каждой из половин спинного мозга серое вещество образует два неправильной формы вертикальных тяжа с передними и задними выступами — столбами, соединенными перемычкой, в середине которых заложен центральный канал, проходящий вдоль спинного мозга и содержащий спинномозговую жидкость. Вверху канал сообщается с IV желудочком головного мозга.

При горизонтальном срезе серое вещество напоминает «бабочку» или букву «Н». В грудном и верхнем поясничном отделах имеются также боковые выступы серого вещества. Серое вещество спинного мозга образовано телами нейронов, частично безмиелиновыми и тонкими миелиновыми волокнами, а также нейроглиальными клетками.

В передних рогах серого вещества расположены тела нейронов спинного мозга, выполняющих моторную функцию. Это так называемые корешковые клетки, так как аксоны этих клеток составляют основную массу волокон передних корешков спинно-мозговых нервов (рис. 6.3).

Рис. 6.3. Разновидности клеток спинного мозга :

В составе спинномозговых нервов они направляются к мышцам и участвуют в формировании позы и движениях (как произвольных, так и непроизвольных). Здесь следует отметить, что именно через произвольные движения осуществляется все богатство взаимодействия человека с окружающим миром, как точно отметил И. М. Сеченов в работе «Рефлексы головного мозга». В своей концептуальной книге великий русский физиолог писал: «Смеется ли ребенок при виде игрушки... дрожит ли девушка при первой мысли о любви, создает ли Ньютон законы всемирного тяготения и пишет их на бумаге — везде окончательным фактом является мышечное движение».

Другой крупный физиолог XIX в., Ч. Шеррингтон ввел понятие спинномозговой «воронки», подразумевая, что на мотонейронах спинного мозга сходится множество нисходящих влияний со всех этажей ЦНС — от продолговатого мозга до коры больших полушарий. Для обеспечения такого взаимодействия двигательных клеток передних рогов с другими участками ЦНС на мотонейронах образуется огромное количество синапсов — до 10 тысяч на одной клетке, а сами они относятся к наиболее крупным клеткам человека.

В составе задних рогов имеется большое количество вставочных нейронов (интернейронов), с которыми контактирует большая часть аксонов, идущих от чувствительных нейронов, расположенных в спинальных ганглиях в составе задних корешков. Вставочные нейроны спинного мозга делятся на две группы, которые, в свою очередь, подразделяются на более мелкие популяции- это внутренние клетки (neurocytus internus) и пучковые клетки (neurocytus funicularis).

В свою очередь, внутренние клетки делятся на ассоциативные нейроны, аксоны которых заканчиваются на разных уровнях в пределах серого вещества своей половины спинного мозга (что обеспечивает связь между разными уровнями с одной стороны спинного мозга), и комиссуральные нейроны, аксоны которых заканчиваются на противоположной стороне спинного мозга (этим достигается функциональная связь двух половин спинного мозга). Отростки обоих типов нейронов нервных клеток заднего рога осуществляют связь с нейронами выше- и нижележащих соседних сегментов спинного мозга, помимо этого они могут контактировать и с мотонейронами своего сегмента.

На уровне грудных сегментов в структуре серого вещества по-являются боковые рога. В них находятся центры вегетативной нервной системы. В боковых рогах грудного и верхних сегментах поясничного отделов спинного мозга расположены спинальные центры симпатической нервной системы, которые иннервируют сердце, сосуды, бронхи, пищеварительный тракт, мочеполовую систему. Здесь находятся нейроны, чьи аксоны связанны с периферическими симпатическими ганглиями (рис. 6.4).

Рис. 6.4. Соматическая и вегетативная рефлекторная дуга спинного мозга:

а — соматическая рефлекторная дуга; б — вегетативная рефлекторная дуга;
1 — чувствительный нейрон;
2 — вставочный нейрон;
3 — двигательный нейрон;

6 — задние рога;
7 — передние рога;
8 — боковые рога

Нервные центры спинного мозга являются рабочими центрами. Их нейроны непосредственно связаны и с рецепторами, и с рабочими органами. Надсегментарные центры ЦНС непосредственного контакта с рецепторами или органами-эффекторами не имеют. Они обмениваются с периферией информацией посредством сегментарных центров спинного мозга.

6.2.2. Белое вещество

Белое вещество спинного мозга составляет передний, боковой и задний канатики и образовано преимущественно продольно идущими миелинизированными нервными волокнами, формирующими проводящие пути. Выделяют три основных вида волокон:

1) волокна, соединяющие участки спинного мозга на различных уровнях;
2) двигательные (нисходящие) волокна, идущие из головного мозга в спинной к мотонейронам, лежащим в передних рогах спинного мозга и дающим начало передним двигательным корешкам;
3) чувствительные (восходящие) волокна, которые частично являются продолжением волокон задних корешков, частично — отростками клеток спинного мозга и восходят кверху к головному мозгу.

6.3. Рефлекторные дуги спинного мозга

Перечисленные выше анатомические образования являются морфологическим субстратом рефлексов, в том числе замыкающихся в спинном мозге. Простейшая рефлекторная дуга включает чувствительный и эффекторный (двигательный) нейроны, по которым нервный импульс движется от рецептора к рабочему органу, называемому эффектором (рис. 6.5, а).

Рис. 6.5. Рефлекторные дуги спинного мозга:


а — двухнейронная рефлекторная дуга;
б — трехнейронная рефлекторная дуга;

1 — чувствительный нейрон;
2 — вставочный нейрон;
3 — двигательный нейрон;
4 — задний (чувствительный) корешок;
5 — передний (двигательный) корешок;
6 — задние рога;
7 — передние рога

Примером простейшего рефлекса может служить коленный рефлекс, возникающий в ответ на кратковременное растяжение четырехглавой мышцы бедра легким ударом по ее сухожилию ниже коленной чашечки. После короткого латентного (скрытого) периода происходит сокращение четырехглавой мышцы, в результате которого приподнимается свободно висящая нижняя часть ноги.
Однако большая часть спииальных рефлекторных дуг имеет трехнейронное строение (рис. 6.5, б). Тело первого чувствительного (псевдоуниполярного) нейрона находится в спинномозговом узле. Его длинный отросток связан с рецептором, воспринимающим внешнее или внутреннее раздражение. От тела нейрона по короткому аксону нервный импульс через чувствительные корешки спинномозговых нервов направляется в спинной мозг, где образует синапсы с телами вставочных нейронов. Аксоны вставочных нейронов могут передавать информацию в вышележащие отделы ЦНС или к мотонейронам спинного мозга. Аксон мотонейрона в составе передних корешков выходит из спинного мозга как часть спинномозговых нервов и направляется к рабочему органу, вызывая изменение его функции.

Каждый спинальный рефлекс, вне зависимости от выполняемой функции, имеет свое рецептивное поле и свою локализацию (место нахождения), свой уровень. Кроме двигательных рефлекторных дуг на уровне грудного и крестцового отделов спинного мозга замыкаются вегетативные рефлекторные дуги, осуществляющие контроль нервной системы за деятельностью внутренних органов.

6.4. Проводящие пути спинного мозга

Различают восходящие и нисходящие пути спинного мозга.
По первым информация от рецепторов и самого спинного мозга поступает в вышележащие отделы ЦНС (табл. 6.1), по вторым информация из высших центров мозга направляется к мотонейронам спинного мозга.

Табл. 6.1. Основные восходящие пути спинного мозга:

Схема расположения проводящих путей на срезе спинного мозга показана на рис. 6.6.

Рис 6.6 Проводящие пути спинного мозга:

1-нежный(тонкий);
2-кленовидный;
3-заднийспинномозжечковый;
4- передний спмнномозежечковый;
5-спиноталаматический;
6-короткоспинальный;
7- короткоспинальный передний;
8-руброспинальный;
9-ретикулоспинальный;
10- тектоспинальный

Рефлекс и рефлекторная дуга

Pефлекс (от лат. "рефлексус" - отражение) - реакция организма на изменения внешней или внутренней среды, осуществляемая при посредстве центральной нервной системы в ответ на раздражение рецепторов.

Рефлексы проявляются в возникновении или прекращении какой-либо деятельности организма: в сокращении или расслаблении мышц, в секреции или прекращении секреции желез, в сужении или расширении сосудов и т. п.

Благодаря рефлекторной деятельности организм способен быстро реагировать на различные изменения внешней среды или своего внутреннего состояния и приспособляться к этим изменениям. У позвоночных животных значение рефлекторной функции центральной нервной системы настолько велико, что даже частичное выпадение ее (при оперативном удалении отдельных участков нервной системы или при заболеваниях ее) часто ведет к глубокой инвалидности и невозможности осуществлять необходимые жизненные функции без постоянного тщательного ухода.

Значение рефлекторной деятельности центральной нервной системы в полной мере было раскрыто классическими трудами И. М. Сеченова и И. П. Павлова. И. М. Сеченов еще в 1862 г. в своем составившем эпоху труде "Рефлексы головного мозга" утверждал: "Все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы".

Виды рефлексов

Все рефлекторные акты целостного организма разделяют на безусловные и условные рефлексы .

Безусловные рефлексы передаются по наследству, они присущи каждому биологическому виду; их дуги формируются к моменту рождения и в норме сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни.

Условные рефлексы возникают при индивидуальном развитии и накоплении новых навыков. Выработка новых временных связей зависит от изменяющихся условий среды. Условные рефлексы формируются на основе безусловных и с участием высших отделов головного мозга.

Безусловные и условные рефлексы можно классифицировать на различные группы по ряду признаков.

    По биологическому значению

    1. оборонительные

    2. ориентировочные

      позно-тонические (рефлексы положения тела в пространстве)

      локомоторные (рефлексы передвижения тела в пространстве)

    По расположению рецепторов, раздражение которых вызывает данный рефлекторный акт

    1. экстерорецептивный рефлекс - раздражение рецепторов внешней поверхноcти тела

      висцеро- или интерорецептивный рефлекс - возникающий при раздражении рецепторов внутренних органов и сосудов

      проприорецептивный (миотатический) рефлекс - раздражение рецепторов скелетных мышц, суставов, сухожилий

    По месту расположения нейронов, участвующих в рефлексе

    1. спинальные рефлексы - нейроны расположены в спинном мозге

      бульбарные рефлексы - осуществляемые при обязательном участии нейронов продолговатого мозга

      мезэнцефальные рефлексы - осуществляемые при участии нейронов среднего мозга

      диэнцефальные рефлексы - участвуют нейроны промежуточного мозга

      кортикальные рефлексы - осуществляемые при участии нейронов коры больших полушарий головного мозга

NB! (Nota bene - обрати внимание!)

В рефлекторных актах, осуществляемых при участии нейронов, расположенных в высших отделах центральной нервной системы, всегда участвуют и нейроны, находящиеся в низших отделах - в промежуточном, среднем, продолговатом и спинном мозгу. С другой стороны, при рефлексах, которые осуществляются спинным или продолговатым, средним или промежуточным мозгом, нервные импульсы доходят до высших отделов центральной нервной системы. Таким образом, эта классификация рефлекторных актов до некоторой степени условна.

    По характеру ответной реакции, в зависимости от того, какие органы в ней участвуют

    1. моторные, или двигательные рефлексы - исполнительным органом служат мышцы;

      секреторные рефлексы - заканчиваются секрецией желез;

      сосудодвигателъные рефлексы - проявляющиеся в сужении или расширении кровеносных сосудов.

NB! Эта классификация приемлема к более или менее простым рефлексам, направленным на объединение функций внутри организма. При сложных же рефлексах, в которых участвуют нейроны, находящиеся в высших отделах центральной нервной системы, как правило, в осуществление рефлекторной реакции вовлекаются различные исполнительные органы, в результетате чего происходит изменение соотношения организма с внешней средой, изменение поведения организма.

Примеры некоторых относительно простых рефлексов, наиболее часто исследуемых в условиях лабораторного эксперимента на животном или в клинике при заболеваниях нервной системы человека [показать] .

Как уже отмечалось выше, подобная классификация рефлексов условна: если какой-либо рефлекс может быть получен при сохранности того или иного отдела центральной нервной системы и разрушении вышележащих отделов, то это не означает, что данный рефлекс осуществляется в нормальном организме только при участии этого отдела: в каждом рефлексе участвуют в той или иной мере все отделы центральной нервной системы.

Любой рефлекс в организме осуществляется при помощи рефлекторной дуги.

Рефлекторная дуга - это путь, по которому раздражение (сигнал) от рецептора проходит к исполнительному органу. Структурную основу рефлекторной дуги образуют нейронные цепи, состоящие из рецепторных, вставочных и эффекторных нейронов. Именно эти нейроны и их отростки образуют путь, по которому нервные импульсы от рецептора передаются исполнительному органу при осуществлении любого рефлекса.

В периферической нервной системе различают рефлекторные дуги (нейронные цепи)

    соматической нервной системы, иннервирующие скелетную иускулатуру

    вегетативной нервной системы, иннервирующие внутренние органы: сердце, желудок, кишечник, почки, печень и т.д.

Рефлекторная дуга состоит из пяти отделов:

    рецепторов , воспринимающих раздражение и отвечающих на него возбуждением. Рецепторами могут быть окончания длинных отростков центростремительных нервов или различной формы микроскопические тельца из эпителиальных клеток, на которых оканчиваются отростки нейронов. Рецепторы расположены в коже, во всех внутренних органах, скопления рецепторов образуют органы чувств (глаз, ухо и т. д.).

    чувствительного (центростремительного, афферентного) нервного волокна , передающего возбуждение к центру; нейрон, имеющий данное волокно, также называется чувствительным. Тела чувствительных нейронов находятся за пределами центральной нервной системы - в нервных узлах вдоль спинного мозга и возле головного мозга.

    нервного центра , где происходит переключение возбуждения с чувствительных нейронов на двигательные; Центры большинства двигательных рефлексов находятся в спинном мозге. В головном мозге расположены центры сложных рефлексов, таких, как защитный, пищевой, ориентировочный и т. д. В нервном центре происходит синаптическое соединение чувствительного и двигательного нейрона.

    двигательного (центробежного, эфферентного) нервного волокна , несущего возбуждение от центральной нервной системы к рабочему органу; Центробежное волокно - длинный отросток двигательного нейрона. Двигательным называется нейрон, отросток которого подходит к рабочему органу и передает ему сигнал из центра.

    эффектора - рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора. Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.

Простейшую рефлекторную дугу можно схематически представить как образованную всего двумя нейронами: рецепторным и эффекторным, между которыми имеется один синапс. Такую рефлекторную дугу называют двунейронной и моносинаптической. Моносинаптические рефлекторные дуги встречаются весьма редко. Примером их может служить дуга миотатического рефлекса.

В большинстве случаев рефлекторные дуги включают не два, а большее число нейронов: рецепторный, один или несколько вставочных и эффекторный. Такие рефлекторные дуги называют многонейронными и полисинаптическими. Примером полисинаптической рефлекторной дуги является рефлекс отдергивания конечности в ответ на болевое раздражение.

Рефлекторная дуга соматической нервной системы на пути от ЦНС к скелетной мышце нигде не прерывается в отличии от рефлекторной дуги вегетативной нервной системы, которая на пути от ЦНС к иннервируемому органу обязательно прерывается с образованием синапса - вегетативного ганглия.

Вегетативные ганглии, в зависимости от локализации, могут быть разделены на три группы:

    позвоночные (вертебральные) ганглии - относятся к симпатической нервной системе. Они расположены по обе стороны позвоночника, образуя два пограничных ствола (их еще называют симпатическими цепочками)

    предпозвоночные (превертебральные) ганглии располагаются на большем расстояни от позвоночника, вместе с тем они находятся в некотором отдалении и от иннервируемых ими органов. К числу превертебральных ганглиев относят ресничный узел, верхний и средний шейный симпатические узлы, солнечное сплетение, верхний и нижний брыжеечные узлы.

    внутриорганные ганглии расположены во внутренних органах: в мышечных стенках сердца, бронхов, средней и нижней трети пищевода, желудка, кишечника, желчного пузыря, мочевого пузыря, а также в железах внешней и внутренней секреции. На клетках этих ганглий прерываются парасимпатические волокна.

Такое различие соматической и вегетативной рефлекторной дуги обусловлено анатомическим строением нервных волокон, составляющих нейронную цепь, и скоростью проведения по ним нервного импульса.

Для осуществления любого рефлекса необходима целостность всех звеньев рефлекторной дуги. Нарушение хотя бы одного из них ведет к исчезновению рефлекса.

Схема реализации рефлекса

В ответ на раздражение рецептора нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. В основе возбуждения лежит изменение концентрации анионов и катионов по обе стороны мембраны отростков нервной клетки, что приводит к изменению электрического потенциала на мембране клетки.

В двухнейронной рефлекторной дуге (первый нейрон - клетка спинно-мозгового ганглия, второй нейрон - двигательный нейрон [мотонейрон] переднего рога спинного мозга) дендрит клетки спинно-мозгового ганглия имеет значительную длину, он следует на периферию в составе чувствительных волокон нервных стволов. Заканчивается дендрит особым приспособлением для восприятия раздражения - рецептором.

Возбуждение от рецептора по нервному волокну центростремительно (центрипетально) передается в спинно-мозговой ганглий. Аксон нейрона спинномозгового ганглия входит в состав заднего (чувствительного) корешка; это волокно доходит до мотонейрона переднего рога и с помощью синапса, в котором передача сигнала происходит при помощи химического вещества - медиатора, устанавливает контакт с телом мотонейрона или с одним из ее дендритов. Аксон этого мотонейрона входит в состав переднего (двигательного) корешка, по которому центробежно (центрифугально) сигнал поступает к исполнительному органу, где соответствующий двигательный нерв заканчивается двигательной бляшкой в мышце. В результате происходит сокращение мышцы.

Возбуждение проводится по нервным волокнам со скоростью от 0,5 до 100 м/с, изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.

Процесс торможения противоположен возбуждению: он прекращает деятельность, ослабляет или препятствует ее возникновению. Возбуждение в одних центрах нервной системы сопровождается торможением в других: нервные импульсы, поступающие в центральную нервную систему, могут задерживать те или иные рефлексы.

Оба процесса - возбуждение и торможение - взаимосвязаны, что обеспечивает согласованную деятельность органов и всего организма в целом. Например, во время ходьбы чередуется сокращение мышц сгибателей и разгибателей: при возбуждении центра сгибания импульсы следуют к мышцам-сгибателям, одновременно с этим центр разгибания тормозится и не посылает импульсы к мышцам-разгибателям, вследствие чего последние расслабляются, и наоборот.

Взаимосвязь, определяющая процессы возбуждения и торможения, т.е. саморегуляции функций организма, осуществляется при помощи прямых и обратных связей между центральной нервной системой и исполнительным органом. Обратная связь ("обратная афферентация" по П.К.Анохину), т.е. связь между исполнительным органом и центральной нервной системой, подразумевает передачу сигналов с рабочего органа в центральную нервную систему о результатах его работы в каждый данный момент.

Согласно обратной афферентации, после получения исполнительным органом эфферентного импульса и выполнения рабочего эффекта, исполнительный орган сигнализирует центральной нервной системе о выполнении приказа на периферии.

Так, при взятии рукой предмета глаза непрерывно измеряют расстояние между рукой и целью и свою информацию посылают в виде афферентных сигналов в мозг. В мозгу происходит замыкание на эфферентные нейроны, которые передают двигательные импульсы в мышцы руки, производящие необходимые для взятия ею предмета действия. Мышцы одновременно воздействуют на находящиеся в них рецепторы, беспрерывно посылающие мозгу чувствительные сигналы, информирующие о положении руки в каждый данный момент. Такая двусторонняя сигнализация по цепям рефлексов продолжается до тех пор, пока расстояние между кистью руки и предметом не будет равно нулю, т.е. пока рука не возьмет предмет. Следовательно, все время совершается самопроверка работы органа, возможная благодаря механизму "обратной афферентации", который имеет характер замкнутого круга.

Существование такой замкнутой кольцевой, или круговой, цепи рефлексов центральной нервной системы и обеспечивает все сложнейшие коррекции протекающих в организме процессов при любых изменениях внутренних и внешних условий (В.Д. Моисеев, 1960). Без механизмов обратной связи живые организмы не смогли бы разумно приспособиться к окружающей среде.

Следовательно, вместо прежнего представления о том, что в основе строения и функции нервной системы лежит разомкнутая рефлекторная дуга, теория информации и обратной связи ("обратной афферентации") дает новое представление о замкнутой кольцевой цепи рефлексов, о круговой системе эфферентно-афферентной сигнализации. Не разомкнутая дуга, а сомкнутый круг - таково новейшее представление о строении и функции нервной системы.

Нервная деятельность организма человека заключается в передаче импульсов. Одним из результатов подобных передач являются рефлексы. Для того, чтобы некий рефлекс выполнялся организмом, должна быть налажена связь от получения сигнала до ответной реакции на раздражитель.

Рефлекс представляет собой реакцию части организма на видоизменения наружного или внутреннего окружения в результате воздействия на рецепторы. Находиться они могут на поверхности кожи, порождая экстерорецептивные рефлексы, а также на внутренних органах и сосудах, что лежит в основе интерорецессивного или миостатического рефлекса.

Ответные реакции на раздражители по своей природе бывают условными и безусловными. Ко вторым относят рефлексы, дуга которых сформирована уже ко времени рождения. У первых она создается под влиянием внешних факторов.

Из чего состоит дуга рефлекса?

Сама дуга представляет собой весь путь нервного импульса от момента соприкосновения человека с раздражителем до проявления ответной реакции. Рефлекторная дуга содержит различные типы нейронов: рецепторный, эффекторный и вставочный.

Рефлекторная дуга организма человека работает так:

  • рецепторы воспринимают раздражение. Чаще всего такими рецепторами служат отростки нервных волокон центростремительного типа либо нейронов.
  • чувствительное волокно транслирует возбуждение к центральной нервной системе. Структура чувствительного нейрона такова, что его тело располагается вне нервной системы, они цепочкой пролегли в узлах вдоль позвоночника и у основания головного мозга.
  • переключение с волокна чувствительного типа на двигательное происходит в спинном мозге. Головной мозг отвечает за формирование более сложных рефлексов.
  • двигательное волокно несет возбуждение к реагирующему органу. Это волокно является элементом двигательного нейрона.
Artrodex - ваше избавление от боли в суставах!

Эффектор - собственно сам реагирующий орган, отвечает на раздражение. Рефлекторная реакция бывает сократительной, двигательной либо выделительной.

Полисинаптические дуги

К полисинаптическим относится трехнейронная дуга, в которой между рецептором и эффектором располагается нервный центр. Такую дугу наглядно иллюстрирует отдергивание руки в ответ на боль.

Полисинаптические дуги имеют особое строение. Такая цепь обязательно проходит через мозг. В зависимости от локализации нейронов, обрабатывающих сигнал, выделяют:

  • спинномозговые;
  • бульбарные;
  • мезэнцефальные;
  • кортикальные.

Если рефлекс обрабатывается в верхних частях центральной нервной системы, то в его обработке принимают участие и нейроны нижних отделов. Отделы ствола головного мозга и спинной мозг также участвуют в формировании рефлексов высокого уровня.

Какой бы ни был рефлекс, если нарушается непрерывность рефлекторной дуги, то происходит исчезновение рефлекса. Чаще всего такой разрыв происходит в результате травмы либо болезни.

В сложных рефлексах для реакции на раздражитель в звенья цепи включаются различные органы, что может изменять поведение организма и его систем.

Также интересно строение дуги мигательного рефлекса. Этот рефлекс в силу своей сложности позволяет изучить такое движение возбуждения по дуге, которое исследовать в других случаях затруднительно. Рефлекторная дуга этого рефлекса начинается с активизации возбуждающего и тормозящего нейронов одновременно. В зависимости от характера повреждения активизируются различные части дуги. Спровоцировать начало мигательного рефлекса может тройничный нерв - ответ на прикосновение, слуховой - ответ на резкий звук, зрительный - ответ на перепад света или видимую опасность.

Рефлекс имеет раннюю и позднюю составляющие. Поздняя составляющая отвечает за формирование задержки ответа. В качестве эксперимента касаются пальцем кожи века. Глаз закрывается молниеносно. При повторном касании кожи реакция проходит медленнее. После обработки мозгом получаемой информации происходит осознанное торможение приобретенного рефлекса. Благодаря такому торможению, например, женщины очень быстро приучаются красить веки, преодолевая естественное желание века прикрыть роговицу глаза.

Другие варианты полисинаптических дуг также поддаются исследованию, однако они зачастую слишком сложны и не очень наглядны для изучения.

Каких бы высот не достигла наука, базовыми рефлексами для изучения реакции человека остаются мигательный и коленный рефлексы. Изучение и замеры скорости прохождения импульса в тройничном и лицевом нервах являются основой оценки состояния ствола головного мозга при различных патологиях и болях.

Моносинаптическая рефлекторная дуга

Дуга, которая состоит всего из двух нейронов, которых вполне достаточно для импульса, носит название моносинаптической. Классическим примером моносинаптической дуги является коленный рефлекс. Именно поэтому подробная схема рефлекторной дуги колена размещается во всех медицинских учебниках. Особенностью состава такой дуги является то, что она не задействует головной мозг. Коленный рефлекс относится к мышечным безусловным. У человека и других позвоночных такие мышечные рефлексы отвечают за выживание.

Неудивительно, что именно коленный рефлекс проверяется невропатологом как один из показателей состояния соматической нервной системы. При ударе молотком по сухожилию, растягивается мышца, после прохождения раздражения через центростремительное волокно к спинномозговому узлу, сигнал через двигательный нейрон в центробежное волокно. В этом эксперименте рецепторы кожи участия не принимают, тем не менее результат его весьма заметен и силу реакции легко дифференцировать.

Вегетативная рефлекторная дуга обрывается на части, образуя синапс, тогда как в соматической системе путь, преодолеваемый импульсом от рецептора до действующей скелетной мышцы, ничем не прерывается.