Характеристика вакцинных препаратов классификация вакцин. Вакцины Какие вакцины существуют

На протяжении столетий человечество пережило не одну эпидемию, унёсшую жизни многих миллионов людей. Благодаря современной медицине удалось разработать препараты, позволяющие избежать множества смертельных заболеваний. Эти препараты носят название "вакцина" и подразделяются на несколько видов, которые мы опишем в этой статье.

Что такое вакцина и как она работает?

Вакцина - это медицинский препарат, содержащий убитые или ослабленные возбудители различных заболеваний либо синтезированные белки патогенных микроорганизмов. Их вводят в организм человека для создания иммунитета к определённой болезни.

Введение вакцин в человеческий организм называется вакцинация, или прививка. Вакцина, попадая в организм, побуждает иммунную систему человека вырабатывать специальные вещества для уничтожение возбудителя, тем самым формируя у него избирательную память к болезни. Впоследствии, если человек инфицируется этим заболеванием, его иммунная система окажет быстрое противодействие возбудителю и человек не заболеет вовсе или перенесет легкую форму болезни.

Способы вакцинации

Иммунобиологические препараты могут вводиться различными способами согласно инструкции к вакцинам в зависимости от вида препарата. Бывают следующие способы вакцинации.

  • Введение вакцины внутримышечно. Местом прививки у детей до года является верхняя поверхность середины бедра, а детям с 2 лет и взрослым предпочтительнее вводить препарат в дельтовидную мышцу, которая находится в верхней части плеча. Способ применим, когда нужна инактивированная вакцина: АКДС, АДС, против вирусного гепатита В и противогриппозная вакцина.

Отзывы родителей говорят о том, что дети младенческого возраста лучше переносят вакцинацию в верхнюю часть бедра, нежели в ягодицу. Этого же мнения придерживаются и медики, обуславливая это тем, что в ягодичной области может быть аномальное размещение нервов, встречаемое у 5 % детей до года. К тому же в ягодичной области у детей этого возраста имеется значительный жировой слой, что увеличивает вероятность попадания вакцины в подкожный слой, из-за чего снижается эффективность препарата.

  • Подкожные инъекции вводятся тонкой иглой под кожу в области дельтовидной мышцы или предплечья. Пример - БЦЖ, прививка от оспы.

  • Интраназальный способ применим для вакцин в форме мази, крема или спрея (прививка от кори, краснухи).
  • Пероральный способ - это когда вакцину в виде капель помещают в рот пациенту (полиомиелит).

Виды вакцин

Сегодня в руках медицинских работников в борьбе с десятками инфекционных заболеваний имеется более ста вакцин, благодаря которым удалось избежать целых эпидемий и значительно улучшить качество медицины. Условно принято выделять 4 вида иммунобиологических препаратов:

  1. Живая вакцина (от полиомиелита, краснухи, кори, эпидемического паротита, гриппа, туберкулёза, чумы, сибирской язвы).
  2. Инактивированная вакцина (против коклюша, энцефалита, холеры, менингококковой инфекции, бешенства, брюшного тифа, гепатита А).
  3. Анатоксины (вакцины против столбняка и дифтерии).
  4. Молекулярные или биосинтетические вакцины (от гепатита В).

Типы вакцин

Вакцины также можно группировать по признаку состава и способа их получения:

  1. Корпускулярные, то есть состоящие из цельных микроорганизмов возбудителя.
  2. Компонентные или бесклеточные состоят из частей возбудителя, так называемого антигена.
  3. Рекомбинантные: в состав этой группы вакцин входят антигены патогенного микроорганизма, введённые с помощью методов генной инженерии в клетки другого микроорганизма. Представителем данной группы является вакцина от гриппа. Еще яркий пример - вакцина от вирусного гепатита В, которая получается путём введения антигена (HBsAg) в клетки дрожжевых грибов.

Ещё один критерий, по которому классифицируется вакцина, - это количество профилактируемых ею заболеваний или возбудителей:

  1. Моновалентные вакцины служат для профилактики только одного заболевания (например, вакцина БЦЖ против туберкулёза).
  2. Поливалентные или ассоциированные - для прививки от нескольких болезней (пример - АКДС против дифтерии, столбняка и коклюша).

Живая вакцина

Живая вакцина - это незаменимый препарат для профилактики множества инфекционных заболеваний, который встречается только в корпускулярном виде. Характерной особенностью этого вида вакцины считается то, что главным её компонентом являются ослабленные штаммы возбудителя инфекции, способные размножаться, однако генетически лишённые вирулентности (способности заражать организм). Они способствуют выработке организмом антител и иммунной памяти.

Преимущество живых вакцин состоит в том, что ещё живые, но ослабленные возбудители побуждают человеческий организм вырабатывать длительную невосприимчивость (иммунитет) к данному патогенному агенту даже при однократной вакцинации. Существует несколько способов введения вакцины: внутримышечно, под кожу, капли в нос.

Недостаток - возможна генная мутация патогенных агентов, что приведет к заболеванию привитого. В связи с этим противопоказана для пациентов с особо ослабленным иммунитетом, а именно для людей с иммунодефицитом и онкобольных. Требует особых условий транспортировки и хранения препарата с целью обеспечения сохранности живых микроорганизмов в нём.

Инактивированные вакцины

Применение вакцин с инактивированными (мёртвыми) патогенными агентами широко распространено для профилактики вирусных заболеваний. Принцип действия базируется на введении в организм человека искусственно культивированных и лишённых жизнеспособности вирусных возбудителей.

«Убитые» вакцины по составу могут быть как цельномикробными (цельновиральными), так и субъединичными (компонентными) и генно-инженерными (рекомбинантными).

Важным преимуществом «убитых» вакцин является их абсолютная безопасность, то есть отсутствие вероятности инфицирования привитого и развития инфекции.

Недостаток - более низкая продолжительность иммунной памяти по сравнению с «живыми» прививками, также у инактивированных вакцин сохраняется вероятность развития аутоиммунных и токсических осложнений, а для формирования полноценной иммунизации требуется несколько процедур вакцинации с выдерживанием необходимого интервала между ними.

Анатоксины

Анатоксины - это вакцины, созданные на основе обеззараженных токсинов, выделяемых в процессе жизнедеятельности некоторыми возбудителями инфекционных заболеваний. Особенность этой прививки состоит в том, что она провоцирует формирование не микробной невосприимчивости, а антитоксического иммунитета. Таким образом, анатоксины с успехом используются для профилактики тех заболеваний, у которых клинические симптомы связаны с токсическим эффектом (интоксикацией), возникающим в результате биологической активности патогенного возбудителя.

Форма выпуска - прозрачная жидкость с осадком в стеклянных ампулах. Перед применением нужно встряхнуть содержимое для равномерного распределения анатоксинов.

Преимущества анатоксинов - незаменимы для профилактики тех заболеваний, против которых живые вакцины бессильны, к тому же они более устойчивы к колебаниям температуры, не требуют специальных условий для хранения.

Недостатки анатоксинов - индуцируют только антитоксический иммунитет, что не исключает возможности возникновения локализованных болезней у привитого, а также носительство им возбудителей данного заболевания.

Изготовление живых вакцин

Массово вакцину начали изготовлять в начале XX века, когда биологи научились ослаблять вирусы и патогенные микроорганизмы. Живая вакцина - это около половины всех профилактических препаратов, применяемых мировой медициной.

Производство живых вакцин базируется на принципе пересева возбудителя в невосприимчивый или маловосприимчивый к данному микроорганизму (вирусу) организм либо культивирование возбудителя в неблагоприятных для него условиях с воздействием на него физических, химических и биологических факторов с последующим отбором невирулентных штаммов. Чаще всего субстрактом для культивирования авирулентных штаммов служат эмбрионы курицы, первичные клеточные (эбриональные фибробласты курицы или перепёлки) и перевиваемые культуры.

Получение «убитых» вакцин

Производство инактивированных вакцин от живых отличается тем, что их получают путём умерщвления, а не аттенуации возбудителя. Для этого отбираются только те патогенные микроорганизмы и вирусы, которые обладают наибольшей вирулентностью, они должны быть одной популяции с чётко очерченными характерными для неё признаками: форма, пигментация, размеры и т. д.

Инактивация колоний возбудителя осуществляется несколькими способами:

  • перегревом, то есть воздействием на культивируемый микроорганизм повышенной температурой (56-60 градусов) определённое время (от 12 минут до 2 часов);
  • воздействие формалином в течение 28-30 суток с поддержанием температурного режима на уровне 40 градусов, инактивирующим химическим реактивом может также выступать раствор бета-пропиолактона, спирта, ацетона, хлороформа.

Изготовление анатоксинов

Для того чтобы получить токсоид, вначале культивируют токсогенные микроорганизмы в питательной среде, чаще всего жидкой консистенции. Это делается для того, чтобы накопить в культуре как можно больше экзотоксина. Следующий этап - это отделение экзотоксина от клетки-продуцента и его обезвреживание при помощи тех же химических реакций, что применяются и для «убитых» вакцин: воздействие химических реактивов и перегрева.

Для снижения реагентности и восприимчивости антигены очищают от балласта, концентрируют и адсорбируют окисью алюминия. Процесс адсорбции антигенов играет важную роль, поскольку введённая инъекция с большой концентрацией токсоидов формирует депо антигенов, в результате антигены поступают и разносятся по организму медленно, обеспечивая тем самым эффективный процесс иммунизации.

Уничтожение неиспользованной вакцины

Независимо от того, какие вакцины были использованы для прививки, ёмкости с остатками препаратов нужно обработать одним из следующих способов:

  • кипячение использованных ёмкостей и инструментария в течение часа;
  • дезинфекция в растворе 3-5%-ного хлорамина в течение 60 минут;
  • обработка 6%-ной перекисью водорода также в течение 1 часа.

Препараты с истекшим сроком годности нужно непременно направить в районный санэпидцентр для утилизации.

О том, какие бывают вакцины, полезно узнать тем родителям, которые не привыкли слепо следовать советам педиатров, а предпочитают иметь хотя бы элементарные познания в данной области иммунологии. Здесь вы сможете ознакомиться с кратким описанием видов вакцин, применяемых в современной иммунизации, а также получить информацию об их составе, в том числе и касательно содержания токсических веществ.

Виды вакцин: живые, убитые и химические

В современной классификации вакцин рассматриваются следующие виды:

1. Живые вакцины. Живые вакцины содержат ослабленные живые микроорганизмы. Примером могут служить вакцины против полиомиелита, кори, свинки, краснухи или туберкулеза. Эти микроорганизмы способны размножаться и вызывать выработку защитных факторов, которые обеспечивают невосприимчивость человека к заболеванию.

Утрата вирулентности у таких штаммов закреплена генетически. Однако проблемы при введении всех видов живых вакцин могут возникнуть у лиц с иммунодефицитами.

2. Убитые вакцины. Инактивированные (убитые) вакцины (например, бешенства) представляют собой патогенные микроорганизмы, инактивированные (убитые) высокой температурой, радиацией, ультрафиолетовым излучением, спиртом, формальдегидом и т.д.

Такой вид вакцин в современной вакцинации реактогенен и в настоящее время применяется редко (коклюшная, против гепатита А).

3. Химические вакцины. Химические вакцины содержат компоненты клеточной стенки или других частей возбудителя.

Другие виды вакцин и их краткая характеристика

К другим видам вакцин относятся:

4. Анатоксины. Анатоксины - это вакцины, состоящие из инактивированного токсина, продуцируемого бактериями. В результате специальной обработки токсические свойства его утрачиваются, но остаются иммуногенные. Примером анатоксинов в классификация вакцин могут служить прививки против дифтерии и столбняка.

5. Рекомбинантные вакцины. Рекомбинантные вакцины получают методами генной инженерии. Суть метода: гены болезнетворного микроорганизма, отвечающие за синтез определенных белков, встраивают в геном какого-либо безвредного микроорганизма (например, кишечная палочка). При их культивировании продуцируется и накапливается белок, который затем выделяется, очищается и используется в качестве вакцины. Примером таких вакцин могут служить рекомбинантная вакцина против вирусного гепатита В, вакцина против ротавирусной инфекции.

6. Синтетические вакцины. Синтетические вакцины представляют собой искусственно созданные антигенные детерминанты (белки) микроорганизмов.

7. Ассоциированные вакцины. Основная характеристика этого вида вакцин - содержание нескольких компонентов (например АКДС - Ассоциированная коклюшно-дифтерийно-столбнячная вакцина).

Противники прививок часто ссылаются на то, что вакцины содержат «побочные» токсические вещества.

Дело обстоит так: как правило, неживые вакцины содержат два дополнительных вещества - консервант (сохраняет долгое время вакцину в стабильном состоянии) и адъювант - гидрооксид алюминия (например, вакцина против гепатита В). Адъювант усиливает иммуногенность вакцины, т.е. способность вызывать длительную защиту от болезни.

В качестве консервантов для основных видов современных вакцин наиболее часто используют соль ртути - мертиолят, реже - формальдегид.

Формальдегид находится в вакцине в следовых количествах.

Мертиолят (международное название - тиомерсал) уже более 50 лет применяется в качестве консерванта в различных вакцинах, лекарственных препаратах и пищевых продуктах.

По данным ВОЗ, ртуть содержится в питьевой воде до 1 мкг/л и в воздухе (за счет испарений земной коры).

В результате за сутки в организм человека попадает с пищей и водой, через легкие до 21 мкг различных соединений ртути.

В то же время в одной дозе вакцины против коклюша, дифтерии, столбняка (АКДС) или против гепатита В содержится 25 мкг мертиолята. Эта доза значительно меньше, чем та, которая накапливается в организме человека в процессе жизни.

Тем не менее, мертиолят (тиомерсал) признан Всемирной организацией здравоохранения (ВОЗ) потенциальным нейротоксином (токсином, поражающим нервную систему), и поэтому всем фирмам, производящим вакцины, рекомендовано усовершенствовать технологию их производства, отказавшись в ближайшем будущем от мертиолята. В настоящее время уже выпускается отечественная вакцина от гепатита В, не содержащая тиомерсал.

Статья прочитана 2 468 раз(a).

Открытие метода вакцинации дало старт новой эре борьбы с болезнями.

В состав прививочного материала входят убитые или сильно ослабленные микроорганизмы либо их компоненты (части). Они служат своеобразным муляжом, обучающим иммунную систему давать правильный ответ инфекционным атакам. Вещества, входящие в состав вакцины (прививки), не способны вызвать полноценное заболевание, но могут дать возможность иммунитету запомнить характерные признаки микробов и при встрече с настоящим возбудителем быстро его определить и уничтожить.

Производство вакцин получило массовые масштабы в начале ХХ века, после того как фармацевты научились обезвреживать токсины бактерий. Процесс ослабления потенциальных возбудителей инфекций получил название аттенуации.

Сегодня медицина располагает более, чем 100 видами вакцин от десятков инфекций.

Препараты для иммунизации по основным характеристикам делятся на три основных класса.

  1. Живые вакцины. Защищают от полиомиелита, кори, краснухи, гриппа, эпидемического паротита, ветряной оспы, туберкулеза, ротавирусной инфекции. Основу препарата составляют ослабленные микроорганизмы - возбудители болезней. Их сил недостаточно для развития значительного недомогания у пациента, но хватает, чтобы выработать адекватный иммунный ответ.
  2. Инактивированные вакцины. Прививки против гриппа, брюшного тифа, клещевого энцефалита, бешенства, гепатита А, менингококковой инфекции и др. В составе мертвые (убитые) бактерии или их фрагменты.
  3. Анатоксины (токсоиды). Особым образом обработанные токсины бактерий. На их основе делают прививочный материал от коклюша, столбняка, дифтерии.

В последние годы появился еще один вид вакцин - молекулярные. Материалом для них становятся рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии (рекомбининтная вакцина против вирусного гепатита В).

Схемы изготовления некоторых видов вакцин

Живые бактериальные

Схема подходит для вакцины БЦЖ, БЦЖ-М.

Живые противовирусные

Схема подходит для производства вакцин от гриппа, ротавируса, герпеса I и II степеней, краснухи, ветряной оспы.

Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться:

  • куриные эмбрионы;
  • перепелиные эмбриональные фибробласты;
  • первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков);
  • перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293).

Первичный сырьевой материал очищают от клеточного дебриса в центрифугах и с помощью сложных фильтров.

Инактивированные антибактериальные вакцины

  • Культивация и очистка штаммов бактерий.
  • Инактивация биомассы.
  • Для расщепленных вакцин клетки микробов дезинтегрируют и осаждают антигены с последующим их хроматографическим выделением.
  • Для конъюгированных вакцин полученные при предыдущей обработке антигены (как правило, полисахаридные) сближают с белком-носителем (конъюгация).

Инактивированные противовирусные вакцины

  • Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться куриные эмбрионы, перепелиные эмбриональные фибробласты, первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков), перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293). Первичная очистка для удаления клеточного дебриса проводится методами ультрацентрифугирования и диафильтрации.
  • Для инактивации используются ультрафиолет, формалин, бета-пропиолактон.
  • В случае приготовления расщепленных или субъединичных вакцин полупродукт подвергают действию детергента с целью разрушить вирусные частицы, а затем выделяют специфические антигены тонкой хроматографией.
  • Человеческий сывороточный альбумин применяется для стабилизации полученного вещества.
  • Криопротекторы (в лиофилизатах): сахароза, поливинилпирролидон, желатин.

Схема подходит для производства прививочного материала против гепатита А, желтой лихорадки, бешенства, гриппа, полиомиелита, клещевого и японского энцефалитов.

Анатоксины

Для дезактивации вредного воздействия токсинов используют методы:

  • химический (обработка спиртом, ацетоном или формальдегидом);
  • физический (подогрев).

Схема подходит для производства вакцин против столбняка и дифтерии.

По данным Всемирной Организации Здравоохранения (ВОЗ), на долю инфекционных заболеваний приходится 25 % от общего количества смертей на планете ежегодно. То есть инфекции до сих пор остаются в списке главных причин, обрывающих жизнь человека.

Одним из факторов, способствующих распространению инфекционных и вирусных заболеваний, являются миграция потоков населения и туризм. Перемещение человеческих масс по планете влияет на уровень здоровья нации даже в таких высокоразвитых странах, как США, ОАЭ и государства Евросоюза.

По материалам: «Наука и жизнь» № 3, 2006, «Вакцины: от Дженнера и Пастера до наших дней», академик РАМН В. В. Зверев, директор НИИ вакцин и сывороток им. И. И. Мечникова РАМН.

Задать вопрос специалисту

Вопрос экспертам вакцинопрофилактики

Вопросы и ответы

Вакцина "Менюгейт" зарегистрирована в России? С какого возраста разрешена к применению?

Да, зарегистрирована, вакцина – от менингококка С, сейчас также есть вакцина конъюгированная, но уже против 4 типов менингококков – А, С, Y, W135 – Менактра. Прививки проводят с 9 мес.жизни.

Муж транспортировал вакцину РотаТек в другой город.Покупая ее в аптеке мужу посоветовали купить охлаждающий контейнер,и перед поездкой его заморозить в морозильной камере,потом привязать вакцину и так ее транспортировать. Время в пути заняло 5 часов. Можно ли вводить такую вакцину ребенку? Мне кажется,что если привязать вакцину к замороженному контейнеру, то вакцина замерзнет!

Отвечает Харит Сусанна Михайловна

Вы абсолютно правы, если в контейнере был лед. Но если там была смесь воды и льда- вакцина не должна замерзать. Однако живые вакцины, к которым относится ротавирусная, не увеличивают реактогенность при температуре менее 0, в отличие от неживых, а, например, для живой полиомиелитной допускается замораживание до -20 град С.

Моему сыну сейчас 7 месяцев.

В 3 месяца у него случился отек Квинке на молочную смесь Малютка.

Прививку от гепатита сделали в роддоме, вторую в два месяца и третью вчера в семь месяцев. Реакция нормальная, даже без температуры.

Но вот на прививку АКДС нам устно дали медотвод.

Я за прививки!! И хочу сделать прививку АКДС. Но хочу сделать ИНФАНРИКС ГЕКСА. Живем в Крыму!!! В крыму ее нигде нет. Посоветуйте как поступить в такой ситуации. Может есть зарубежный аналог? Бесплатную делать категорически не хочу. Хочу качественную очищеную, что бы как монжно меньше риска!!!

В Инфанрикс Гекса содержится компонент против гепатита В. Ребенок полностью привит против гепатита. Поэтому в качестве зарубежного аналога АКДС можно сделать вакцину Пентаксим. Кроме того, следует сказать, что отек Квинке на молочную смесь не является противопоказанием к вакцине АКДС.

Подскажите, пожалуйста, на ком и как тестируют вакцины?

Отвечает Полибин Роман Владимирович

Как и все лекарственные препараты вакцины проходят доклинические исследования (в лаборатории, на животных), а затем клинические на добровольцах (на взрослых, а далее на подростках, детях с разрешения и согласия их родителей). Прежде чем разрешить применение в национальном календаре прививок исследования проводят на большом числе добровольцев, например вакцина против ротавирусной инфекции испытывалась почти на 70 000 в разных странах мира.

Почему на сайте не представлен состав вакцин? Почему до сих пор проводится ежегодная реакция Манту (зачастую не информативна), а не делается анализ по крови, например, квантифероновый тест? Как можно утверждать реакции иммунитета на введенную вакцину, если еще ни кому не известно в принципе, что такое иммунитет и как он работает, особенно если рассматривать каждого отдельно взятого человека?

Отвечает Полибин Роман Владимирович

Состав вакцин изложен в инструкциях к препаратам.

Реакция Манту. По Приказу № 109 «О совершенствовании противотуберкулезных мероприятий в Российской Федерациии» и Санитарным правилам СП 3.1.2.3114-13 "Профилактика туберкулеза", несмотря на наличие новых тестов, детям необходимо ежегодно делать реакцию Манту, но так как этот тест может давать ложноположительные результаты, то при подозрении на тубинфицирование и активную туберкулезную инфекцию проводят Диаскин-тест. Диаскин-тест является высоко чувствительным (эффективным) для выявления активной туберкулезной инфекции (когда идет размножение микобактерий). Однако полностью перейти на Диаскин-тест и не делать реакцию Манту фтизиатры не рекомендуют, так как, он не "улавливает" раннее инфицирование, а это важно, особенно для детей, поскольку профилактика развития локальных форм туберкулеза эффективна именно в раннем периоде инфицирования. Кроме того, инфицирование микобактерией туберкулеза необходимо определять для решения вопроса о ревакцинации БЦЖ. К сожалению, нет ни одного теста, который бы со 100% точностью ответил на вопрос, есть инфицирование микобактерией или заболевание. Квантифероновый тест также выявляет только активные формы туберкулеза. Поэтому при подозрении на инфицирование или заболевание (положительная реакция Манту, контакт с больным, наличие жалоб и пр.) используются комплексные методы (диаскин-тест, квантифероновый тест, рентгенография и др.).

Что касается «иммунитета и как он работает», в настоящее время иммунология - это высокоразвитая наука и многое, в частности, что касается процессов на фоне вакцинации – открыто и хорошо изучено.

Ребёнку 1 год и 8 месяцев, все прививки ставились в соответствии с календарем прививок. В том числе 3 пентаксима и ревакцинация в полтора года тоже пентаксим. В 20 месяцев надо ставить от полиомиелита. Очень всегда переживаю и отношусь тщательно к выбору нужных прививок, вот и сейчас перерыла весь интернет, но так и не могу решить. Мы ставили всегда инъекцию (в пентаксиме). А теперь говорят капли. Но капли-живая вакцина, я боюсь различных побочек и считаю, что лучше перестраховаться. Но вот читала, что капли от полиомиелита вырабатывают больше антител, в том числе и в желудке, то есть более эффективные, чем инъекция. Я запуталась. Поясните, инъекция менее эффективна (имовакс-полио, например)? Отчего ведутся такие разговоры? У каплей боюсь хоть и минимальный, но риск осложнения в виде болезни.

Отвечает Полибин Роман Владимирович

В настоящее время Национальный календарь прививок России предполагает комбинированную схему вакцинации против полиомиелита, т.е. только 2 первых введения инактивированной вакциной и остальные – оральной полиовакциной. Это связано с тем, чтобы полностью исключить риск развития вакциноассоциированного полиомиелита, который возможен только на первое и в минимальном проценте случаев на второе введение. Соответственно, при наличии 2-х и более прививок от полиомиелита инактивированной вакциной, осложнения на живую полиовакцину исключены. Действительно, считалось и признается некоторыми специалистами, что оральная вакцина имеет преимущества, так как формирует местный иммунитет на слизистых кишечника в отличие от ИПВ. Однако сейчас стало известно, что инактивированная вакцина в меньшей степени, но также формирует местный иммунитет. Кроме того, 5 введений вакцины против полиомиелита как оральной живой, так и инактивированной вне зависимости от уровня местного иммунитета на слизистых оболочках кишечника, полностью защищают ребенка от паралитических форм полиомиелита. В связи с вышесказанным вашему ребенку необходимо сделать пятую прививку ОПВ или ИПВ.

Следует также сказать, что на сегодняшний день идет реализация глобального плана Всемирной организации здравоохранения по ликвидации полиомиелита в мире, которая предполагает полный переход всех стран к 2019 году на инактивированную вакцину.

В нашей стране уже очень долгая история использования многих вакцин – ведутся ли долгосрочные исследования их безопасности и можно ли ознакомиться с результатами воздействия вакцин на поколения людей?

Отвечает Шамшева Ольга Васильевна

За прошлый век продолжительность жизни людей возросла на 30 лет, из них 25 дополнительных лет жизни люди получили за счет вакцинации. Больше людей выживают, они живут дольше и качественнее за счет того, что снизилось инвалидность из-за инфекционных заболеваний. Это общий ответ на то, как влияют вакцины на поколения людей.

На сайте Всемирной Организации Здравоохранения (ВОЗ) есть обширный фактический материал о благотворном влиянии вакцинации на здоровье отдельных людей и человечества в целом. Отмечу, что вакцинация –это не система верований, это - область деятельности, опирающаяся на систему научных фактов и данных.

На основании чего мы можем судить о безопасности вакцинации? Во-первых, ведется учет и регистрация побочных действий и нежелательных явлений и выяснение их причинно-следственной связи с применением вакцин (фармаконадзор). Во-вторых, важную роль в отслеживании нежелательных реакций играют постмаркетинговые исследования (возможного отсроченного неблагоприятного действия вакцин на организм), которые проводят компании - владельцы регистрационных свидетельств. И, наконец, проводится оценка эпидемиологической, клинической и социально-экономической эффективности вакцинации в ходе эпидемиологических исследований.

Что качается фармаконадзора, то у нас в России система фармаконадзора только формируется, но демонстрирует очень высокие темпы развития. Только за 5 лет число зарегистрированных сообщений о нежелательных реакциях на лекарственные средства в подсистему «Фармаконадзор» АИС Росздравнадзора выросло в 159 раз. 17 033 жалобы в 2013 году против 107 в 2008. Для сравнения – в США в год обрабатываются данные около 1 млн случаев. Система фармаконадзора позволяет отслеживать безопасность препаратов, накапливаются статистические данные, на основании которых может измениться инструкция по медицинскому применению препарата, препарат может быть отозван с рынка и т.п. Таким образом, обеспечивается безопасность пациентов.

И по закону «Об обращении лекарственных средств» от 2010 года врачи обязаны сообщать федеральным органам контроля обо всех случаях побочного действия лекарственных средств.

Определение, цели применения и классификация.
Вакцины - препараты из микроорганизмов или продуктов их жизнедеятельности, используемые для создания активного специфического приобретенного иммунитета против определенных видов микроорганизмов или выделяемых ими токсинов.

Рис. 1. Вакцина "Акт-ХИБ" предназначена для профилактики гемофильной В инфекции.

Разрабатываемые вакцины условно разделяют на две категории: традиционные (первого и второго поколения) и новые , конструируемые на основе методов биотехнологии.

К вакцинам первого поколения относятся классические вакцины Дженнера и Пастера, представляющие собой убитые или ослабленные живые возбудители, которые больше известны под названием корпускулярных вакцин .

Под вакцинами второго поколения следует понимать препараты, основу которых составляют отдельные компоненты возбудителей, то есть индивидуальные химические соединения, такие как дифтерийный и столбнячный анатоксины или высокоочищенные полисахаридные антигены капсульных микроорганизмов, например менингококков или пневмококков. Эти препараты больше известны под названием химических вакцин (молекулярные ). По числу антигенов, входящих в вакцину, различают моно - и поливакцины (ассоциированные), по видовому составу - бактериальные, риккетсиозные, вирусные .

Общая характеристика вакцин .
Живые вакцины представляют собой препараты, содержащие наследственно измененные формы микроорганизмов (вакцинные штаммы), утратившие свои патогенные свойства. Но сохранившие способность приживляться и размножаться в организме, вызывая формирование специфического иммунитета.
Живые вакцины получены при использовании двух основных принципов, которые предложены основателями учения о вакцинации Дженнером и Пастером.
Принцип Дженнера - использование генетически близких (родственных) штаммов возбудителей инфекционных заболеваний животных. На основании этого принципа были получены - осповакцина, вакцина БЦЖ, бруцеллезная вакцина.
Принцип Пастера - получение вакцин из искусственно ослабленных (аттенуированных) штаммов возбудителей. Основная задача метода заключается в получении штаммов с наследственно измененными признаками, т.е. низкой вирулентностью и сохранением иммуногенных свойств. Применяются следующие методы получения живых вакцин:
Инактивированные (убитые) вакцины . Убитые вакцины готовят из инактивированных вирулентных штаммов бактерий и вирусов, обладающих полным набором необходимых антигенов. Для инактивации возбудителей применяют нагревание, обработку формалином, ацетоном, спиртом, которые обеспечивают надежную инактивацию и минимальное повреждение структуры антигенов.
Химические вакцины . Химические вакцины состоят из антигенов, полученных из микроорганизмов различными способами, преимущественно химическими методами.
Основной способ получения химических вакцин заключается в выделении протективных антигенов, обеспечивающих развитие надежного иммунитета, и очистки этих антигенов от балластных веществ. В настоящее время молекулярные вакцины получают методом биосинтеза или путем химического синтеза.
Анатоксины . Анатоксины готовят из экзотоксинов различных видов микробов. Токсины подвергают обезвреживанию формалином, при этом они не теряют иммуногенные свойства и способность вызывать образование антител (антитоксинов).
Анатоксины выпускают как в виде монопрепаратов (моновакцины ), так и в составе ассоциированных препаратов, предназначенных для одновременной вакцинации против нескольких заболеваний (ди- тривакцины).
Вакцины нового поколения .
Традиционные вакцины не позволили решить вопросы профилактики инфекционных заболеваний, связанных с возбудителями, которые плохо культивируются или не культивируются в системах in vivo и in vitro. Достижения иммунологии позволяют получать отдельные эпитопы (антигенные детерминанты), которые в изолированном виде иммуногенностью не обладают. Поэтому создание вакцин нового поколения требует конъюгации антигенных детерминант с молекулой-носителем, в качестве которой могут выступать как природные белки, так и синтетические молекулы (субъединичные, синтетические вакцины)
С достижениями генной инженерии связано получение рекомбинантных векторны х вакцин - живых вакцин, состоящих из непатогенных микробов, в геном которых встроены гены других (патогенных) микроорганизмов. Таким способом уже давно получена так называемая дрожжевая вакцина против гепатита В, разработаны и проходят испытания вакцины против малярии, ВИЧ-инфекции, а также показана возможность создания по этому принципу многих других вакцин.


Показания для прививок.
Различают прививки плановые и выполняемые по эпидемическим показаниям.
Каждая страна пользуется своим национальным календарем профилактических прививок, который предусматривает проведение плановой массовой вакцинации населения. Обязательность таких прививок, как правило, устанавливается законодательством страны.

Условия хранения и транспортирования иммунобиологических препаратов.
Соблюдение правил хранения и транспортирования иммунобиологических препаратов является непременным условием. Нарушение температурного режима хранения ряда препаратов не только сопровождается снижением их эффективности, но может привести и к повышению реактогенности, а это у лиц с высоким уровнем антител ведет к развитию аллергических реакций немедленного типа, к коллаптоидным реакциям.
Транспортирование и хранение должно проводиться при соблюдении специальной системы «холодовой цепи» - бесперебойно функционирующей системы, обеспечивающей оптимальный температурный режим хранения и транспортирования вакцин и других иммунобиологических препаратов на всех этапах их следования от предприятия-изготовителя до вакцинируемого. Оптимальной для хранения и транспортирования большинства вакцин и других иммунобиологических препаратов является температура в пределах 2-8°С .

Уничтожение неиспользованных медицинских иммунобиологических препаратов.
Ампулы и другие емкости, содержащие неиспользованные остатки инактивированных бактериальных и вирусных вакцин, а также живой коревой, паротитной и краснушной вакцин, анатоксинов, иммуноглобулинов человека, гетерологичных сывороток, а также инструментарий, который был использован для их введения, не подлежат какой-либо специальной обработке.
Ампулы и другие емкости, содержащие неиспользованные остатки других живых бактериальных и вирусных вакцин, а также инструментарий, использованный для их введения, подлежат кипячению в течение 60 мин (сибиреязвенная вакцина 2 ч), или обработке 3-5% раствором хлорамина в течение 1 ч, или 6% раствором перекиси водорода (срок хранения не более 7 сут) в течение 1 ч, или автоклавируются.
Все неиспользованные серии препаратов с истекшим сроком годности, а также не подлежащие применению по другим причинам следует направлять на уничтожение в районный (городской) центр госсанэпиднадзора.

Проверка физических свойств иммунобиологических препаратов перед проведением прививок.
Проверить этикетку или маркировку препарата на коробке, ампуле (флаконе), прочесть данные о препарате, сроке годности, проверить целость ампул, соответствие требованиям внешнего вида. При отсутствии этикетки, истечения срока годности, нарушения герметичности ампул, изменения внешнего вида (цвета, наличия хлопьев, посторонних включений и т.п.) пременять препараты нельзя.

Рис. 2. Иммунобиологические препараты перед проведением прививок необходимо проверить на соответствие физических свойств.

Проведение прививок.
Прививки должны проводиться в специально выделенном для этой цели помещении (прививочные кабинеты детских поликлиник, медицинские кабинеты ДДУ и школ и т.п.). При невозможности выделить отдельное помещение для проведения плановых прививок должно быть определено строго фиксированное время, в течение которого в нем не должны проводиться другие медицинские процедуры. Категорически запрещается проведение прививок в перевязочных. Прививки должны проводиться в асептических условиях.
Перед проведением прививок необходимо проверить состояние здоровья прививаемого: опрос, осмотр, термометрия (не допускают при ангине, инфекциях дыхательных путей, гнойничковых поражениях кожи и слизистых оболочек независимо от локализации).

Рис. 3. Прививки проводят в специальных помещениях в асептических условиях.

Учет прививок.
Для детей - история развития и карта профилактических прививок. Для взрослых - журнал учета прививок. Каждому человеку с момента первой вакцинации выдается «Сертификат о профилактических прививках», который является важным документом и хранится его владельцем пожизненно.
Информация о выполнении прививок, а также сильных реакциях и осложнениях отправляется в центр госсанэпиднадзора и в отдел поствакцинальных осложнений ГИСК (Государственный институт стандартизации и контроля медицинских биологических препаратов).

Реакции на прививочные препараты.
Вводимые в организм вакцины, как правило, вызывают общие и местные реакции, сопровождающие вакцинальный процесс и формирование поствакцинального иммунитета. Выраженность реакции зависит от свойств препарата и индивидуальных особенностей организма.

Таблица 1.
Характеристика местных реакций

Оглавление темы "Иммунодефициты. Вакцины. Сыворотки. Иммуноглобулины.":









Вакцины. Виды антигенов вакцин. Классификация вакцин. Виды вакцин. Живые вакцины. Ослабленные (аттенуированные) вакцины. Дивергентные вакцины.

Вакцины - иммунобиологические препараты, предназначенные для активной иммунопрофилактики, то есть для создания активной специфической невосприимчивости организма к конкретному возбудителю. Вакцинация признана ВОЗ идеальным методом профилактики инфекционных заболеваний человека. Высокая эффективность, простота, возможность широкого охвата вакцинируемых лиц с целью массового предупреждения заболевания вывели активную иммунопрофилактику в большинстве стран мира в разряд государственных приоритетов. Комплекс мероприятий по вакцинации включает отбор лиц, подлежащих вакцинации, выбор вакцинного препарата и определение схемы его использования, а также (при необходимости) контроль эффективности, купирование возможных патологических реакций и осложнений. В качестве Аг в вакцинных препаратах выступают:

Цельные микробные тела (живые или убитые);
отдельные Аг микроорганизмов (наиболее часто протективные Аг);
токсины микроорганизмов;
искусственно созданные Аг микроорганизмов;
Аг, полученные методами генной инженерии.

Большинство вакцин разделяют на живые, инактивированные (убитые, неживые), молекулярные (анатоксины) генно инженерные и химические; по наличию полного или неполного набора Аг - на корпускулярные и компонентные, а по способности вырабатывать невосприимчивость к одному или нескольким возбудителям - на моно- и ассоциированные.

Живые вакцины

Живые вакцины - препараты из аттенуированных (ослабленных) либо генетически изменённых патогенных микроорганизмов, а также близкородственных микробов, способных индуцировать невосприимчивость к патогенному виду (в последнем случае речь идёт о так называемых дивергентных вакцинах). Поскольку все живые вакцины содержат микробные тела, то их относят к группе корпускулярных вакцинных препаратов.

Иммунизация живой вакциной приводит к развитию вакцинального процесса, протекающего у большинства привитых без видимых клинических проявлений. Основное достоинство живых вакцин- полностью сохранённый набор Аг возбудителя, что обеспечивает развитие длительной невосприимчивости даже после однократной иммунизации. Живые вакцины обладают и рядом недостатков. Наиболее характерный - риск развития манифестной инфекции в результате снижения аттенуации вакцинного штамма. Подобные явления более типичны для противовирусных вакцин (например, живая полиомиелитная вакцина в редких случаях может вызвать полиомиелит вплоть до развития поражения спинного мозга и паралича).

Ослабленные (аттенуированные) вакцины

Ослабленные (аттенуированные ) вакцины изготавливают из микроорганизмов с пониженной патогенностью, но выраженной иммуногенностью. Введение вакцинного штамма в организм имитирует инфекционный процесс: микроорганизм размножается, вызывая развитие иммунных реакций. Наиболее известны вакцины для профилактики сибирской язвы, бруцеллёза, Ку-лихорадки, брюшного тифа. Однако большая часть живых вакцин - противовирусные. Наиболее известны вакцина против возбудителя жёлтой лихорадки, противополи-омиелитная вакцина Сэйбина, вакцины против гриппа, кори, краснухи, паротита и аденовирусных инфекций.

Дивергентные вакцины

В качестве вакцинных штаммов используют микроорганизмы, находящиеся в близком родстве с возбудителями инфекционных болезней. Аг таких микроорганизмов индуцируют иммунный ответ, перекрёстно направленный на Аг возбудителя. Наиболее известны и длительно применяются вакцина против натуральной оспы (из вируса коровьей оспы) и БЦЖ для профилактики туберкулёза (из микобактерий бычьего туберкулёза).