Как называют стадии митоза. Что такое митоз и какой в профазе митоза происходит процесс

Деление клетки является центральным моментом размножения.

В процессе деления из одной клетки возникают две. Клетка на основе ассимиляции органических и неорганических веществ создает себе подобную с характерным строением и функциями.

В делении клетки можно наблюдать два основных момента: деление ядра - митоз и деление цитоплазмы - цитокинез, или цитотомия. Основное внимание генетиков до сих пор приковывает митоз, поскольку, с точки зрения хромосомной теории, ядро считается «органом» наследственности.

В процессе митоза происходит:

  1. удвоение вещества хромосом;
  2. изменение физического состояния и химической организации хромосом;
  3. расхождение дочерних, точнее сестринских, хромосом к полюсам клетки;
  4. последующее деление цитоплазмы и полное восстановление двух новых ядер в сестринских клетках.

Таким образом, в митозе заложен весь жизненный цикл ядерных генов: удвоение, распределение и функционирование; в результате завершения митотического цикла сестринские клетки оказываются с равным «наследством».

При делении ядро клетки проходит пять последовательных стадий: интерфазу, профазу, метафазу, анафазу и телофазу; некоторые цитологи выделяют еще шестую стадию - прометафазу.

Между двумя последовательными делениями клетки ядро находится в стадии интерфазы. В этот период ядро при фиксации и Окраске имеет сетчатую структуру, образуемую красящимися тонкими нитями, которые в следующей фазе формируются в хромосомы. Хотя интерфазу называют иначе фазой покоящегося ядра , на самом теле метаболические процессы в ядре в этот период совершаются с наибольшей активностью.

Профаза - первая стадия подготовки ядра к делению. В профазе сетчатая структура ядра постепенно превращается в хромосомные нити. С самой ранней профазы даже в световом микроскопе можно наблюдать двойную природу хромосом. Это говорит о том, что в ядре именно в ранней или поздней интерфазе осуществляется наиболее важный процесс митоза - удвоение, или редупликация, хромосом, при котором каждая из материнских хромосом строит себе подобную - дочернюю. Вследствие этого каждая хромосома выглядит продольно удвоенной. Однако эти половинки хромосом, которые называются сестринскими хроматидами , в профазе не расходятся, так как удерживаются вместе одним общим участком - центромерой; центромерный участок делится позже. В профазе хромосомы претерпевают процесс скручивания по своей оси, что приводит к их укорочению и утолщению. Нужно подчеркнуть, что в профазе каждая хромосома в кариолимфе располагается случайно.

В клетках животных еще в поздней телофазе или очень ранней интерфазе происходит удвоение центриоли, после чего в профазе начинается схождение дочерних центриолей к полюсам и образований астросферы и веретена, называемого новым аппаратом. В это же время растворяются ядрышки. Существенным признаком окончания профазы является растворение оболочки ядра, в результате чего хромосомы оказываются в общей, массе цитоплазмы и кариоплазмы, которые теперь образуют миксоплазму. Этим заканчивается профаза; клетка вступает в метафазу.

В последнее время между профазой и метафазой исследователи стали выделять промежуточную стадию, называемую прометафазой . Прометафаза характеризуется растворением и исчезновением ядерной оболочки и движением хромосом к экваториальной плоскости клетки. Но к этому моменту еще не завершается образование ахроматинового веретена.

Метафазой называют стадию окончания расположения хромосом на экваторе веретена. Характерное расположение хромосом в экваториальной плоскости называют экваториальной, или метафазной, пластинкой. Расположение хромосом по отношению друг к другу является случайным. В метафазе хорошо выявляются число и форма хромосом, в особенности при рассмотрении экваториальной пластинки с полюсов деления клетки. Ахроматиновое веретено полностью сформировано: нити веретена приобретают плотную консистенцию чем остальная масса цитоплазмы, и прикрепляются к центромерному участку хромосомы. Цитоплазма клетки в этот период имеет наименьшую вязкость.

Анафазой называют следующую фазу митоза, в которой делятся хроматиды, которые теперь можно назвать уже сестринскими или дочерними хромосомами, расходятся к полюсам. При этом отталкиваются друг от друга в первую очередь центромерные участки, а затем расходятся к полюсам сами хромосомы. Нужно сказать, что расхождение хромосом в анафазе начинается одновременно - «как по команде» - и завершается очень быстро.

В телофазе дочерние хромосомы деспирализуются и утрачивают видимую индивидуальность. Образуются оболочка ядра и само ядро. Ядро реконструируется в обратном порядке по сравнению с теми изменениями, которые оно претерпевало в профазе. В конце концов восстанавливаются и ядрышки (или ядрышко), причем в том количестве, в каком они присутствовали в родительских ядрах. Число ядрышек является характерным для каждого типа клеток.

В это же время начинается симметричное разделение тела клетки. Ядра же дочерних клеток переходят в состояние интерфазы.

Нa рисунке выше приведена схема цитокинеза животной и растительной клеток. В животной клетке деление происходит путем перешнуровывания цитоплазмы материнской клетки. В растительной клетке формирование клеточной перегородки идет при участки бляшек веретена, образующих в плоскости экватора перегородку, называемую фрагмопластом. Этим заканчивается митотический цикл. Продолжительность его зависит, по-видимому, от типа ткани, физиологического состояния организма, внешних факторов (температуры, светового режима) и длится от 30 мин до 3 ч. По данным разных авторов, скорость прохождения отдельных фаз изменчива.

Как внутренние, так и внешние факторы среды, действующие на рост организма и его функциональное состояние, влияют на продолжительность клеточного деления и его отдельных фаз. Поскольку ядро играет огромную роль в метаболических процессах клетки, естественно полагать, что длительность фаз митоза может изменяться в соответствии с функциональным состоянием ткани органа. Например, установлено, что во время покоя и сна животных митотическая активность различных тканей значительно выше, чем в период бодрствования. У ряда животных частота клеточных делений на свету снижается, а в темноте увеличивается. Предполагают также, что на митотическую активность клетки влияют гормоны.

Причины, определяющие готовность клетки к делению, до сих пор остаются невыясненными. Есть основания предполагать несколько таких причин:

  1. удвоение массы клеточной протоплазмы, хромосом и других органелл, в силу чего нарушаются ядерно-плазменные отношения; для деления клетка должна достигнуть определенных веса и объема, характерных для клеток данной ткани;
  2. удвоение хромосом;
  3. выделение хромосомами и другими органеллами клетки специальных веществ, стимулирующих клеточное деление.

Механизм расхождения хромосом к полюсам в анафазе митоза также остается невыясненным. Активную роль в этом процессе, видимо, играют нити веретена, представляющие организованные и ориентированные центриолями и центромерами белковые нити.

Характер митоза, как мы уже говорили, меняется в зависимости от типа и функционального состояния ткани. Для клеток разных тканей характерны различные типы митозов, В описанном типе митоза деление клетки происходит равным и симметричным образом. В результате симметричного митоза сестринские клетки являются наследственно равноценными в отношении как ядерных генов, так и цитоплазмы. Однако, кроме симметричного, встречаются и другие типы митоза, а именно: асимметричный митоз, митоз с задержкой цитокинеза, деление многоядерных клеток (деление синцитиев), амитоз, эндомитоз, эндорепродукция и политения.

В случае асимметричного митоза сестринские клетки оказываются неравноценными по размеру, количеству цитоплазмы, а также в отношении их дальнейшей судьбы. Примером этого могут служить неодинакового размера сестринские (дочерние) клетки нейробласта кузнечика, яйцеклетки животных при созревании и при спиральном дроблении; при делении ядер в пыльцевых зернах одна из дочерних клеток может в дальнейшем делиться, другая - нет, и т. д.

Митоз с задержкой цитокинеза характеризуется тем, что ядро клетки делится многократно, и лишь затем происходит деление тела клетки. В результате такого деления образуются многоядерные клетки вроде синцития. Примером этого служит образование клеток эндосперма и образование спор.

Амитозом называют прямое деление ядра без образования фигур деления. При этом деление ядра происходит путем «перешнуровывания» его на две части; иногда из одного ядра образуется сразу несколько ядер (фрагментация). Амитоз постоянно встречается в клетках ряда специализированных и патологических тканей, например в раковых опухолях. Его можно наблюдать при воздействиях различных повреждающих агентов (ионизирующие излучения и высокая температура).

Эндомитозом называют такой процесс, когда происходит удвоение деления ядер. При этом хромосомы, как и обычно, репродуцируются в интерфазе, но последующее расхождение их происходит внутри ядра с сохранением ядерной оболочки и без образования ахроматинового веретена. В некоторых случаях хотя и растворяется оболочка ядра, однако расхождение хромосом к полюсам не осуществляется, вследствие чего в клетке происходит умножение числа хромосом даже в несколько десятков раз. Эндомитоз встречается в клетках различных тканей как растений, так и животных. Так, например, А. А. Прокофьева-Бельговская показала, что путем эндомитоза в клетках специализированных тканей: в гиподерме циклопа, жировом теле, перитонеальном эпителии и других тканях кобылки (Stenobothrus) - набор хромосом может увеличиваться в 10 раз. Такое умножение числа хромосом связано с функциональными особенностями дифференцированной ткани.

При политении происходит умножение числа хромосомных нитей: после редупликации по всей длине они не расходятся и остаются прилегающими друг к другу. В этом случае умножается число хромосомных нитей в пределах одной хромосомы, в результате диаметр хромосом заметно увеличивается. Число таких тонких нитей в политенной хромосоме может достигать 1000-2000. В этом случае образуются так называемые гигантские хромосомы. При политении выпадают все фазы митотического цикла, кроме основной - репродукции первичных нитей хромосомы. Явление политении наблюдается в клетках ряда дифференцированных тканей, например в ткани слюнных желез двукрылых, в клетках некоторых растений и простейших.

Иногда имеет место удвоение одной или нескольких хромосом без каких-либо преобразований ядра - такое явление называется эндорепродукцией .

Итак, все фазы митоза клетки, составляющие , являются обязательными лишь для типичного процесса.

некоторых случаях, главным образом в дифференцированных тканях, митотический цикл претерпевает изменения. Клетки таких тканей утратили способность к воспроизведению целого организма, и метаболическая деятельность их ядра приспособлена к функции поциализированной ткани.

Эмбриональные и меристемные клетки, не утратившие функцию воспроизведения целого организма и относящиеся к недифференцированным тканям, сохраняют полный цикл митоза, на чем и основывается бесполое и вегетативное размножение.

Одним из важнейших процессов в индивидуальном развитии живого организма является митоз. В данной статье мы кратко и понятно постараемся объяснить, какие процессы происходят во время деления клетки, расскажем о биологическом значении митоза.

Определение понятия

Из учебников за 10 класс по биологии мы знаем, что митоз – деление клетки, в результате которого из одной материнской клетки образуются две дочерние с тем же самым набором хромосом.

В переводе с древнегреческого языка термин «митоз» обозначает «нить». Это как связующее звено между старыми и новыми клетками, в которых сохраняется генетический код.

Процесс деления в целом начинается от ядра и заканчивается цитоплазмой. Именуется он как митотический цикл, который состоит из стадии митоза и интерфазы. В результате деления диплоидной соматической клетки образуется две дочерние клетки. Благодаря такому процессу происходит увеличение числа клеток тканей.

Стадии митоза

Исходя из морфологических особенностей, процесс деления распределяют на такие стадии:

  • Профаза ;

На данном этапе ядро уплотняется, внутри него конденсируется хроматин, который закручивается в спираль, под микроскопом просматриваются хромосомы.

ТОП-4 статьи которые читают вместе с этой

Под влиянием ферментов ядра и их оболочки растворяются, хромосомы в этом периоде беспорядочно располагаются в цитоплазме. Позднее происходит разделение центриолей к полюсам, образовывается веретено деления клеток, нити которого крепятся к полюсам и хромосомам.

Для данной стадии характерно удвоение ДНК, но пары хромосом ещё держатся друг друга.

Перед стадией профазы у растительной клетки идёт подготовительная фаза - препрофаза. В чём заключается подготовка клетки к митозу можно понять на данном этапе. Для него характерными являются образование препрофазного кольца, фрагмосомы, а также нуклеация микротрубочек вокруг ядра.

  • Прометафаза ;

На этом этапе хромосомы приходят в движение и направляются к ближайшему полюсу.

Во многих учебных пособиях препрофазу и прометофазу относят к стадии профазы.

  • Метафаза ;

На начальном этапе хромосомы находятся в экваториальной части веретена, так что давление полюсов действует на них равномерно. В ходе данной стадии число микротрубочек веретена постоянно растёт и обновляется.

Хромосомы выстраиваются парами в спираль вдоль экватора веретена в строгом порядке. Хроматиды постепенно отсоединяются, но ещё держатся за нити веретена.

  • Анафаза ;

На этом этапе происходит удлинение хроматид, которые постепенно расходятся к полюсам, так как нити веретена сокращаются. Образуются дочерние хромосомы.

По времени это самая короткая фаза. Сестринские хроматиды внезапно разделяются и отходят к разным полюсам.

  • Телофаза ;

Является последней фазой деления, когда хромосомы удлиняются, и формируется новая ядерная оболочка около каждого полюса. Нити, из которых состояло веретено, полностью разрушаются. На этом этапе делится цитоплазма.

Завершение последней стадии совпадает с разделением материнской клетки, которое называется цитокинезом. Именно от прохождения этого процесса зависит, сколько клеток образуется при делении, их может быть две и более.

Рис. 1. Стадии митоза

Значение митоза

Биологическое значение процесса деления клеток неоспоримо.

  • Именно благодаря ему возможно поддержание постоянного набора хромосом.
  • Воспроизведение идентичной клетки возможно только путём митоза. Таким способом заменяются клетки кожи, эпителия кишечника, кровяных клеток эритроцитов, жизненный цикл которых составляет всего 4 месяца.
  • Копирование, а значит и сохранение генетической информации.
  • Обеспечение развития и роста клеток, благодаря чему многоклеточный организм образуется из одноклеточной зиготы.
  • При помощи такого деления возможна регенерация частей тела у некоторых живых организмов. Например, у морской звезды восстанавливаются лучи.

Рис. 2. Регенерация морской звезды

  • Обеспечение бесполого размножения. Например, почкование гидры, а также вегетативное размножение растений.

Рис. 3. Почкование гидры

Что мы узнали?

Деление клеток называется митозом. Благодаря ему копируется и сохраняется генетическая информация клетки. Процесс происходит в несколько этапов: подготовительная фаза, профаза, метафаза, анафаза, телофаза. В результате образуется две дочерние клетки, которые полностью похожи на первоначальную материнскую клетку. В природе значение митоза велико, так как благодаря ему возможно развитие и рост одноклеточных и многоклеточных организмов, регенерация некоторых частей тела, бесполое размножение.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 296.

Митоз - это способ деления эукариотических клеток, в результате которого образуются 2 дочерние клетки, которые имеют такой же набор хромосом, и материнская клетка.

В течение митоза происходит одно деление клетки, который состоит из четырех фаз: профазы, метафазы, анафазы и телофазы. Набор хромосом в клетках перед разделением и после разделения диплоидный. Состояние наследственной информации после разделения неизменной. Митоз в растительных клеток был открыт в 1874 году И. Д. Чистяковым, а в животных клеток митотическое деление открыли несколько позже - в 1878 году - В. Флеминг и Π. И. Перемежко.

фазы митоза

Профаза - фаза спирализации двохроматидних хромосом. В профазе происходят следующие процессы:

спирализация (конденсация ), то есть укорочение и утолщение двохроматидних хромосом;

■ различия центриолей к полюсам;

■ уменьшение и исчезновение ядрышки (ядрышек)

■ распад на фрагменты ядерной оболочки;

■ формирование веретена деления - системы микротрубочек в клетке, которая делится. Обеспечивает расхождения хромосом в митозе и мейозе. В составе веретена деления содержится два типа микротрубок: те, которые отходят от полюсов (полюсные) и от центромер хромосом (хромосомные). Расхождения хромосом происходит в результате сокращения хромосомных микротрубок. Веретено деления вместе с центрами сбора микротрубочек образует митотический аппарат.

Метафаза - фаза расположения двохроматидних хромосом на экваторе клетки. В метафазе хромосомы располагаются на экваторе

I-III - профаза; IV - метафаза; V-VI - анафаза; VII-VIII - телофаза.

клетки на равном расстоянии от полюсов ядра в одной плоскости, образуя так называемую метафазную пластинку. Важно отметить, что они остаются в таком положении в течение достаточно длительного времени. В связи с этим метафаза является удобной для подсчета количества хромосом в клетке.

Анафаза - фаза различия однохроматидних хромосом к полюсам клеток. В анафазе хромосомы разделяются на отдельные хроматиды и расходятся к полюсам клетки.

Телофаза - фаза деспирализации однохроматидних хромосом. ее называют еще "профаза наоборот", поскольку происходят процессы, которые являются противоположными процессов профазы: деспирализация однохроматидних хромосом, расположение центриолей у ядра, формирование ядрышки (ядрышек), образование ядерной оболочки и разрушения веретена деления.

Биологическое значение митоза: 1) обеспечивает точное распределение наследственного материала между двумя дочерними клетками; 2) обеспечивает постоянство кариотипа при бесполом размножении; 3) лежит в основе бесполого размножения, регенерации, роста.

БИОЛОГИЯ + Колхицин - алкалоид, который имеет сильную антимиоттичну действие. Это соединение подавляет образование нитей митотического веретена деления, препятствуя его сбору с субъединиц белка тубулина. Колхицин применяют в биологии для изучения кариотипа и для клинической диагностики хромосомных аномалий, в селекции для получения полиплоидных форы, в медицине для уменьшения боли при подагре и др. Получают колхицин с клубнелуковиц безвременника осеннего (Colchicum autumnale L. ) , который относится к семейству Мелантия порядке лилиецветные. Безвременник очень ядовитое, но одновременно и важное лекарственное растение и интересная декоративное растение.

Характеристика фаз митоза

Последовательность фаз митотического цикла представлена на рис. 4.

Рис. 4. Фазы митоза

Профаза. В профазе ядро увеличивается, и в нем становятся отчетливо видны хромосомные нити, которые в это время уже спирализованы.

Каждая хромосома после редупликации в интерфазе состоит из двух сестринских хроматид, соединенных одной центроме­рой. В конце профазы обычно исчезают ядерная оболочка и ядрышки. Иногда ядрышко исчезает в следующей фазе митоза. На препаратах всегда можно найти раннюю и позднюю про­фазы и сравнить их между собой. Отчетливо видны изменения: исчезает ядрышко и оболочка ядра. Хромосомные нити более четко видны в поздней профазе, и нередко можно заметить, что они удвоены. В профазе наблюдается также расхождение центриолей, которые образуют два полюса клетки.

Прометафаза начинается с быстрого распада ядерной оболочки на мелкие фрагменты, неотличимые от фрагментов эндоплазматического ретикулума (рис. 5). В хромосомах с каждой стороны центромеры в прометафазе образуются особые структуры, называемые кинетохорами. Они прикрепляются к специальной группе микротрубочек, называемых кинетохорными нитями или кинетохорными микротрубочками. Эти нити отходят от обеих сторон каждой хромосомы, идут в противоположных направлениях и взаимодействуют с нитями биполярного веретена. При этом хромосомы начинают интенсивно двигаться.

Рис. 5. Прометафаза (выстраивается фигура материнской звезды) в беспигментной клетке. Окраска железным гематоксилином по Гейденгайну. Среднее увеличение

Метафаза. После того как исчезнет ядерная оболочка, видно, что хромосомы достигли максимальной спирализации, стали короче и перемещаются к экватору клетки, располагаясь в одной плоскости. Центриоли, находящиеся на полюсах клетки, завершают формирование веретена деления, и его нити присо­единяются к хромосомам в области центромеры. Центромеры всех хромосом находятся в одной экваториаль­ной плоскости, а плечи могут располагаться выше или ниже. Такое положение хромосом удобно для их подсчета и изучения морфологии.

Анафаза начинается с сокращения нитей веретена деления, за счет чего происходит могут располагаться выше или ниже. Все это удобно для подсчета числа хромосом, изучения их морфологии и деления центромер. В анафазе митоза происходит расщепление центромерного участка каждой из двухроматидных хромосом, приводящее к разделению сестринских хроматид и превращению их в самостоятельные хромосомы (формальное соотношение количества хромосом и молекул ДНК - 4n4с).

Так происходит точное распределение генетического материала, и на каждом полюсе оказывается такое же число хромосом, какое было у исходной клетки до их удвоения.

Перемещение хроматид к по­люсам происходит вследствие сокращения тянущихся нитей и удлинения опорных нитей митотического веретена.

Телофаза. После завершения расхождения хромосом к полюсам материнской клетки в телофазе формируются две дочерние клетки, каждая из которых получает полный набор однохроматидных хромосом материнской клетки (формула 2n2с для каждой из дочерних клеток).

В телофазе хромосомы на каждом полюсе пре­терпевают деспирализацию, т.е. процесс, противоположный происходящему в профазе. Контуры хромосом теряют свою четкость, митотическое веретено разрушается, восстанавлива­ется ядерная оболочка и появляются ядрышки. Разделение ядер клетки называется кариокинезом (рис. 6).

Затем, из фрагмопласта формируется клеточная стенка, которая делит все содержимое цитоплазмы на две равные части. Этот процесс называется цитокинезом. Так заканчивается митоз.

Рис. 6. Фазы митоза у различных растений

Рис. 7. Распределение гомологичных хромосом и содержащихся в них генов во время митотического цикла у гипотетического организма (2n = 2) поколений и генетическая непрерывность жизни в случае бесполого размножения организмов.

Базисные термины и понятия: анафаза; дочерняя клетка; интерфаза; материнская (родительская) клетка; метафаза; митоз (период М); митотический (клеточный) цикл; постсинтетический период(G 2); пресинтетический период (G 1); профаза; сестринские хроматиды; синтетический период (S); телофаза; хроматида; хроматин; хромосома; центромера.

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл . Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G 1 , синтетического — S, постсинтетического, или премитотического, — G 2 .

Пресинтетический период (2n 2c , где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c ) — репликация ДНК.

Постсинтетический период (2n 4c ) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c ) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

— это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

Интерфаза 1 (в начале — 2n 2c , в конце — 2n 4c ) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Метафаза 1 (2n 4c ) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c ) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным .

Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c ) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

    Перейти к лекции №12 «Фотосинтез. Хемосинтез»

    Перейти к лекции №14 «Размножение организмов»