Квантовое туннелирование. Туннельный эффект В чем суть явления туннельного эффекта

ТУННЕЛЬНЫЙ ЭФФЕКТ

ТУННЕЛЬНЫЙ ЭФФЕКТ

(туннелирование), преодоление микрочастицей потенциального барьера в случае, когда её полная (остающаяся при Т. э. большей частью неизменной) меньше высоты барьера. Т. э.- явление существенно квант. природы, невозможное в классич. механике; аналогом Т. э. в волн. оптике может служить проникновение световой внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда с точки зрения геом. оптики происходит . Т. э. лежит в основе мн. важных процессов в ат. и мол. физике, в физике ат. ядра, тв. тела и т. д.

Т. э. интерпретируется на основе (см. КВАНТОВАЯ МЕХАНИКА). Классич. ч-ца не может находиться внутри потенц. барьера высоты V, если её энергия? импульс р - мнимой величиной (m - ч-цы). Однако для микрочастицы этот вывод несправедлив: вследствие соотношения неопределённостей фиксация ч-цы в пространств. области внутри барьера делает неопределённым её импульс. Поэтому имеется отличная от нуля вероятность обнаружить микрочастицу внутри запрещённой с точки зрения классич. механики области. Соответственно появляется определ. вероятность прохождения ч-цы сквозь потенц. барьер, что и отвечает Т. э. Эта вероятность тем больше, чем меньше масса ч-цы, чем уже потенц. барьер и чем меньше энергии недостаёт ч-це, чтобы достичь высоты барьера (чем меньше разность V-?). Вероятность прохождения сквозь барьер - гл. фактор, определяющий физ. хар-ки Т. э. В случае одномерного потенц. барьера такой хар-кой служит коэфф. прозрачности барьера, равный отношению потока прошедших сквозь него ч-ц к падающему на барьер потоку. В случае трёхмерного барьера, ограничивающего замкнутую область пр-ва с пониж. потенц. энергией (потенциальную яму), Т. э. характеризуется вероятностью w выхода ч-цы из этой области в ед. времени; величина w равна произведению частоты колебаний ч-цы внутри потенц. ямы на вероятность прохождения сквозь барьер. Возможность «просачивания» наружу ч-цы, первоначально находившейся в потенц. яме, приводит к тому, что соответствующие ч-ц приобретают конечную ширину порядка ћw, а сами эти становятся квазистационарными.

Примером проявления Т. э. в ат. физике могут служить атома в сильном электрич. и ионизация атома в поле сильной эл.-магн. волны. Т. э. лежит в основе альфа-распада радиоактивных ядер. Без Т. э. было бы невозможно протекание термоядерных реакций: кулоновский потенц. барьер, препятствующий необходимому для синтеза сближению ядер-реагентов, преодолевается частично благодаря высокой скорости (высокой темп-ре) таких ядер, а частично благодаря Т. э. Особенно многочисленны примеры проявления Т. э. в физике тв. тела: автоэлектронная эмиссия , явления в контактном слое на границе двух ПП, Джозефсона эффект и т. д.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ТУННЕЛЬНЫЙ ЭФФЕКТ

(туннелирование) - системы через область движения, запрещённую классич. механикой. Типичный пример такого процесса- прохождение частицы через потенциальный барьер, когда её энергия меньше высоты барьера. Импульс частицы р в этом случае, определяемый из соотношения где U(x)- потенц. энергия частицы ( т - масса), был бы в области внутри барьера, мнимой величиной. В квантовой механике благодаря неопределённостей соотношению между импульсом и координатой подбарьерное оказывается возможным. Волновая ф-ция частицы в этой области экспоненциально затухает, и в квазиклассич. случае (см. Квазиклассическое приближение )её амплитуда в точке выхода из-под барьера мала.

Одна из постановок задач о прохождении потенц. барьера соответствует случаю, когда на барьер падает стационарный поток частиц и требуется найти величину прошедшего потока. Для таких задач вводится коэф. прозрачности барьера (коэф. туннельного перехода) D, равный отношению интенсивностей прошедшего и падающего потоков. Из обратимости по времени следует, что коэф. прозрачности для переходов в "прямом" и обратном направлениях одинаковы. В одномерном случае коэф. прозрачности может быть записан в виде


интегрирование проводится по классически недоступной области, х 1,2 - точки поворота, определяемые из условия В точках поворота в пределе классич. механики импульс частицы обращается в нуль. Коэф. D 0 требует для своего определения точного решения кван-тово-механич. задачи.

При выполнении условия квазиклассичности


на всём протяжении барьера, за исключением непосредств. окрестностей точек поворота x 1,2 . коэф. D 0 слабо отличается от единицы. Существ. отличие D 0 от единицы может быть, напр., в тех случаях, когда кривая потенц. энергии с одной из сторон барьера идёт настолько круто, что квазиклассич. там неприменимо, или когда энергия близка к высоте барьера (т. е. выражение, стоящее в экспоненте, мало). Для прямоугольного барьера высотой U о и шириной а коэф. прозрачности определяется ф-лой
где

Основание барьера соответствует нулевой энергии. В квазиклассич. случае D мал по сравнению с единицей.

Др. постановка задачи о прохождении частицы через барьер состоит в следующем. Пусть частица в нач. момент времени находится в состоянии, близком к т. н. стационарному состоянию, к-рое получилось бы при непроницаемом барьере (напр., при барьере, приподнятом вдали от потенциальной ямы на высоту, большую энергии вылетающей частицы). Такое состояние наз. квазистационарным. Аналогично стационарным состояниям зависимость волновой ф-ции частицы от времени даётся в этом случае множителем В качестве энергии здесь фигурирует комплексная величина Е , мнимая часть к-рой определяет вероятность распада квазистационарного состояния в единицу времени за счёт Т. э.:

В квазиклассич. приближении вероятность, даваемая ф-лой (3), содержит экспоненц. множитель того же типа, что и в-ф-ле (1). В случае сферически симметричного потенц. барьера вероятность распада квазистационарного состояния с орбит. квантовым числом l определяется ф-лой


Здесь r 1,2 -радиальные точки поворота, подынтегральное выражение в к-рых равно нулю. Множитель w 0 зависит от характера движения в классически разрешённой части потенциала, напр. он пропорц. классич. частоте колебаний частицы между стенками барьера.

Т. э. позволяет понять механизм a-распада тяжёлых ядер. Между -частицей и дочерним ядром действует элек-тростатич. отталкивание, определяемое ф-лой На малых расстояниях порядка размера а ядра таковы, что эфф. можно считать отрицательным: В результате вероятность а -распада даётся соотношением

Здесь -энергия вылетающей a-частицы.

Т. э. обусловливает возможность протекания термоядерных реакций на Солнце и звёздах при темп-ре в десятки и сотни млн. градусов (см. Эволюция звёзд), а также в земных условиях в виде термоядерных взрывов или УТС.

В симметричном потенциале, состоящем из двух одинаковых ям, разделённых слабопроницаемым барьером, Т. э. приводит к интерференции состояний в ямах, что приводит к слабому двойному расщеплению дискретных уровней энергии (т. н. инверсионное расщепление; см. Молекулярные спектры). Для бесконечного периодичного в пространстве набора ям каждый уровень превращается в зону энергий. Таков механизм образования узких электронных энергетич. зон в кристаллах с сильной связью электронов с узлами решётки.

Если к полупроводниковому кристаллу приложено элек-трич. поле, то зоны разрешённых энергий электронов становятся наклонными в пространстве. Тем самым уровень пост. энергии электрона пересекает все зоны. В этих условиях становится возможным переход электрона из одной энергетич. зоны в другую за счёт Т. э. Классически недоступной областью при этом является зона запрещённых энергий. Это явление наз. пробоем Зинера. Квазиклассич. приближение отвечает здесь малой величине напряжённости электрич. поля. В этом пределе вероятность пробоя Зинера определяется в осн. экспонентой, в показателе к-рой стоит большая отрицат. величина, пропорциональная отношению ширины запрещённой энергетич. зоны к энергии, набираемой электроном в приложенном поле на расстоянии, равном размеру элементарной ячейки.

Похожий эффект проявляется в туннельных диодах, в к-рых зоны наклонены благодаря полупроводникам р- и n -типа по обе стороны от границы их соприкосновения. Туннелирование осуществляется благодаря тому, что в зоне, куда переходит носитель заряда, имеется конечная незанятых состояний.

Благодаря Т. э. возможен электрич. между двумя металлами, разделёнными тонкой диэлектрич. перегородкой. Эти могут находиться как в нормальном, так и в сверхпроводящем состоянии. В последнем случае может иметь место Джозефсона эффект.

Т. э. обязаны такие явления, происходящие в сильных электрич. полях, как автоионизация атомов (см. Ионизация полем автоэлектронная эмиссия из металлов. В обоих случаях электрич. поле образует барьер конечной прозрачности. Чем сильнее электрич. поле, тем прозрачнее барьер и тем сильнее электронный ток из металла. На этом принципе основан сканирующий туннельный микроскоп - прибор, измеряющий туннельный ток из разных точек исследуемой поверхности и дающий информацию о характере её неоднородности.

Т. э. возможен не только в квантовых системах, состоящих из одной частицы. Так, напр., низкотемпературное движение дислокаций в кристаллах может быть связано с туннелированием конечной части , состоящей из многих частиц. В такого рода задачах линейную дислокацию можно представить как упругую струну, лежащую первоначально вдоль оси у в одном из локальных минимумов потенциала V(x, у). Этот потенциал не зависит от у, а его рельеф вдоль оси х представляет собой последовательность локальных минимумов, каждый из к-рых находится ниже другого на величину, зависящую от приложенного к кристаллу механич. напряжения. Движение дислокации под действием этого напряжения сводится к туннелированию в соседний минимум определ. отрезка дислокации с последующим подтягиванием туда оставшейся её части. Такого же рода туннельный механизм может отвечать за движение волн зарядовой плотности в диэлектрике Пайерлса (см. Пайерлса переход).

Для расчётов эффектов туннелирования таких многоразмерных квантовых систем удобно использовать квазиклассич. представление волновой ф-ции в виде где S- классич. системы. Для Т. э. существенна мнимая часть S, определяющая затухание волновой ф-ции в классически недоступной области. Для её вычисления используется метод комплексных траекторий.

Квантовая частица, преодолевающая потенц. барьер, может быть связана с термостатом. В классич. механике это соответствует движению с трением. Тем самым, для описания туннелирования необходимо привлечение теории, получившей назв. диссипативной квантовой механики. Такого рода соображения необходимо использовать для объяснения конечного времени жизни токовых состояний контактов Джозефсона. В этом случае происходит туннелирование эфф. квантовой частицы через барьер, а роль термостата играют электроны.

Лит.: Ландау Л. Д., Лифшиц Е. М., Квантовая , 4 изд., М., 1989; Займан Дж., Принципы теории твердого тела, пер. с англ., 2 изд., М., 1974; Базь А. И., Зельдович Я. Б., Переломов А. М., Рассеяние, реакции и распады в нерелятивистской квантовой механике, 2 изд., М., 1971; Туннельные явления в твердых телах, пер. с англ., М., 1973; Лихарев К. К., Введение в динамику джозефсоновских переходов, М., 1985. Б. И. Ивлев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ТУННЕЛЬНЫЙ ЭФФЕКТ" в других словарях:

    Современная энциклопедия

    Прохождение через потенциальный барьер микрочастицы, энергия которой меньше высоты барьера; квантовый эффект, наглядно объясняемый разбросом импульсов (и энергий) частицы в области барьера (см. Неопределенности принцип). В результате туннельного… … Большой Энциклопедический словарь

    Туннельный эффект - ТУННЕЛЬНЫЙ ЭФФЕКТ, прохождение через потенциальный барьер микрочастицы, энергия которой меньше высоты барьера; квантовый эффект, наглядно объясняемый разбросом импульсов (и энергий) частицы в области барьера (вследствие неопределенности принципа) … Иллюстрированный энциклопедический словарь

    туннельный эффект - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN tunnel effect … Справочник технического переводчика

    ТУННЕЛЬНЫЙ ЭФФЕКТ - (туннелирование) квантово механическое явление, заключающееся в преодолении микрочастицей потенциального (см.), когда её полная энергия меньше высоты барьера. Т. э. обусловлен волновыми свойствами микрочастиц и влияет на течение термоядерных… … Большая политехническая энциклопедия

    Квантовая механика … Википедия

    Прохождение через потенциальный барьер микрочастицы, энергия которой меньше высоты барьера; квантовый эффект, наглядно объясняемый разбросом импульсов (и энергий) частицы в области барьера (см. Неопределённости принцип). В результате туннельного… … Энциклопедический словарь

БК Леон является ведущим онлайн-букмекером на гемблинговом рынке. Компания повышенное внимание уделяет бесперебойной работе сервиса. Также постоянно совершенствуется функционал портала. Для удобства пользователей создано зеркало Леон.

Перейти на зеркало

Что такое зеркало Леон.

Для получения доступа к официальному порталу БК Leon, необходимо воспользоваться зеркалом. Пользователю рабочее зеркало предоставляет множество преимуществ таких, как:

  • разнообразная линейка спортивных мероприятий, которые имеют высокие коэффициенты;
  • предоставление возможности игры в режиме Live, смотреть матчи будет интересным занятием;
  • подробный материал относительно проведенных соревнований;
  • удобный интерфейс, с которым быстро разберется даже неопытный пользователь.

Рабочее зеркало представляет собой копию официального портала. Он имеет идентичную функциональность и синхронную базу данных. За счет этого данные учетной записи не меняются. Разработчиками предусмотрена возможность блокировки рабочего зеркала, на такой случай предоставляется иное. Данные точные копии рассылаются и контролируются сотрудниками БК Леон. Если воспользоваться функционирующим зеркалом, то можно получить доступ к официальному порталу БК Леон.

Пользователю не составит трудностей найти зеркало, так как их список подлежит обновлению. При закрытом доступе от посетителя сайта требуется выполнить установку приложения Леон для мобильного телефона на компьютер. Также нужно поменять IP на иную страну за счет VPN. Для изменения местоположения пользователя или провайдера нужно воспользоваться TOP-браузером.

Разработчики предусмотрели различные возможности пользования зеркалом. Для этого с правой стороны сайта имеется надпись “Доступ к сайту”, зеленая кнопка “Обход блокировок” позволяет игроку зайти в подменю и добавить универсальную закладку в браузер.

Также удобство пользователю предоставляет мобильное приложение. Если необходимо узнать о новом адресе зеркала портала, можно позвонить по бесплатному телефону. Получать доступ к зеркалу позволяет канал @leonbets_official на Telegram . Приложение Leonacsess для Windows позволяет всегда получить доступ к сайту. Данные способы дают возможность получить игроку доступ к рабочему зеркалу.

Почему заблокировали основной сайт Леон

Это происходит вследствие действий службы Роскомнадзора. Это связано с отсутствием лицензии на ведение букмекерской деятельности. Синий Leon не получил лицензию, чтобы игрок не платил с выигрыша 13%.

Как зарегистрироваться на зеркале Леонбетс

Зарегистрироваться на этом сайте значительно проще, чем официально. Пользователю не требуется регистрироваться на двух порталах, что занимает до двух дней. Если отдать предпочтение рабочему зеркалу, то данная процедура будет максимально простой.

Для этого пользователю понадобится только заполнить данные относительно Ф. И. О., контакты. Также необходимо определиться с валютой, указать дату рождения и домашний адрес. Также нужно подписаться на рассылку сообщений. Это позволит оперативно получать информацию от букмекеров. Зарегистрированный пользователь получает возможность иметь доступ к личному кабинету, что позволяет произвести ставку на матчи, мероприятия. При возникновении сложностей можно обратиться в службу технической поддержки.

> Квантовое туннелирование

Изучите квантовый туннельный эффект . Узнайте, при каких условиях возникает эффект туннельного зрения, формула Шредингера, теория вероятности, орбитали атомов.

Если объекту не хватает энергии, чтобы пробиться сквозь барьер, то он способен туннелироваться через воображаемое пространство с другой стороны.

Задача обучения

  • Выявить факторы, влияющие на вероятность туннелирования.

Основные пункты

  • Квантовое туннелирование используют для любых объектов перед барьером. Но в макроскопических целях вероятность возникновения небольшая.
  • Туннельный эффект возникает из-за мнимой компонентной формулы Шредингера. Так как она присутствует в волновой функции любого объекта, то может существовать в воображаемом пространстве.
  • Туннелирование сокращается с ростом массы тела и увеличением разрыва между энергиями объекта и барьера.

Термин

  • Туннелирование – квантово-механическое прохождение частички сквозь энергетический барьер.

Как возникает туннельный эффект? Вообразите, что вы бросаете мяч, но он исчезает мгновенно, так и не коснувшись стены, и появляется с другой стороны. Стена здесь останется целой. Удивительно, но существует конечная вероятность того, что это событие осуществится. Явление именуют квантовым туннельным эффектом.

На макроскопическом уровне возможность туннелирования остается незначительной, но она постоянно наблюдается в наномасштабах. Давайте посмотрим на атом с р-орбиталью. Между двумя долями расположена узловая плоскость. Есть вероятность, что в любой ее точке можно найти электрон. Однако электроны переходят от одной доли к другой путем квантового туннелирования. Им просто нельзя находиться в узловой области, и они путешествуют по воображаемому пространству.

Красная и синяя доли показывают объемы, где присутствует 90% вероятность обнаружения электрона в любой временной промежуток, если орбитальная зона занята

Временное пространство не выступает реальным, но оно активно участвует в формуле Шредингера:

Вся материя располагает волновым компонентом и может существовать в мнимом пространстве. Понять разницу вероятности туннелирования поможет комбинация массы, энергии и высоты энергии объекта.

Когда объект подходит к барьеру, волновая функция меняется от синусоидальной до экспоненциально сокращающейся. Формула Шредингера:

Вероятность туннелирования становится меньше при росте массы объекта и возрастания разрыва между энергиями. Волновая функция никогда не приближается к 0, поэтому туннелирование так часто встречается в наномасштабах.

ТУННЕЛЬНЫЙ ЭФФЕКТ (туннелирование) - квантовый переход системы через область движения, запрещённую классич. механикой. Типичный пример такого процесса- прохождение частицы через потенциальный барьер , когда её энергия меньше высоты барьера. Импульс частицы р в этом случае, определяемый из соотношения где U(x) - потенц. энергия частицы (т - масса), был бы в области внутри барьера, мнимой величиной. В квантовой механике благодаря неопределённостей соотношению между импульсом и координатой подбарьерное движение оказывается возможным. Волновая ф-ция частицы в этой области экспоненциально затухает, и в квазиклассич. случае (см. Квазиклассическое приближение )её амплитуда в точке выхода из-под барьера мала.

Одна из постановок задач о прохождении потенц. барьера соответствует случаю, когда на барьер падает стационарный поток частиц и требуется найти величину прошедшего потока. Для таких задач вводится коэф. прозрачности барьера (коэф. туннельного перехода) D , равный отношению интенсивностей прошедшего и падающего потоков. Из обратимости по времени следует, что коэф. прозрачности для переходов в "прямом" и обратном направлениях одинаковы. В одномерном случае коэф. прозрачности может быть записан в виде


интегрирование проводится по классически недоступной области, х 1,2 - точки поворота, определяемые из условия В точках поворота в пределе классич. механики импульс частицы обращается в нуль. Коэф. D 0 требует для своего определения точного решения кван-тово-механич. задачи.

При выполнении условия квазиклассичности


на всём протяжении барьера, за исключением непосредств. окрестностей точек поворота x 1,2 коэф. D 0 слабо отличается от единицы. Существ. отличие D 0 от единицы может быть, напр., в тех случаях, когда кривая потенц. энергии с одной из сторон барьера идёт настолько круто, что квазиклассич. приближение там неприменимо, или когда энергия близка к высоте барьера (т. е. выражение, стоящее в экспоненте, мало). Для прямоугольного барьера высотой U о и шириной а коэф. прозрачности определяется ф-лой
где

Основание барьера соответствует нулевой энергии. В квазиклассич. случае D мал по сравнению с единицей.

Др. постановка задачи о прохождении частицы через барьер состоит в следующем. Пусть частица в нач. момент времени находится в состоянии, близком к т. н. стационарному состоянию, к-рое получилось бы при непроницаемом барьере (напр., при барьере, приподнятом вдали от потенциальной ямы на высоту, большую энергии вылетающей частицы). Такое состояние наз. квазистационарным. Аналогично стационарным состояниям зависимость волновой ф-ции частицы от времени даётся в этом случае множителем В качестве энергии здесь фигурирует комплексная величина Е , мнимая часть к-рой определяет вероятность распада квазистационарного состояния в единицу времени за счёт Т. э.:

В квазиклассич. приближении вероятность, даваемая ф-лой (3), содержит экспоненц. множитель того же типа, что и в-ф-ле (1). В случае сферически симметричного потенц. барьера вероятность распада квазистационарного состояния с орбит. l определяется ф-лой


Здесь r 1,2 -радиальные точки поворота, подынтегральное выражение в к-рых равно нулю. Множитель w 0 зависит от характера движения в классически разрешённой части потенциала, напр. он пропорц. классич. частоте частицы между стенками барьера.

Т. э. позволяет понять механизм a-распада тяжёлых ядер. Между-частицей и дочерним ядром действует элек-тростатич. отталкивание, определяемое ф-лой На малых расстояниях порядка размера а ядра таковы, что эфф. потенциал можно считать отрицательным: В результате вероятность а -распада даётся соотношением

Здесь -энергия вылетающей a-частицы.

Т. э. обусловливает возможность протекания термоядерных реакций на Солнце и звёздах при темп-ре в десятки и сотни млн. градусов (см. Эволюция звёзд ),а также в земных условиях в виде термоядерных взрывов или УТС.

В симметричном потенциале, состоящем из двух одинаковых ям, разделённых слабопроницаемым барьером, Т. э. приводит к состояний в ямах, что приводит к слабому двойному расщеплению дискретных уровней энергии (т. н. инверсионное расщепление; см. Молекулярные спектры) . Для бесконечного периодичного в пространстве набора ям каждый уровень превращается в зону энергий. Таков механизм образования узких электронных энергетич. зон в кристаллах с сильной связью электронов с узлами решётки.

Если к полупроводниковому кристаллу приложено элек-трич. поле, то зоны разрешённых энергий электронов становятся наклонными в пространстве. Тем самым уровень пост. энергии электрона пересекает все зоны. В этих условиях становится возможным переход электрона из одной энергетич. зоны в другую за счёт Т. э. Классически недоступной областью при этом является зона запрещённых энергий. Это явление наз. пробоем Зинера. Квазиклассич. приближение отвечает здесь малой величине напряжённости электрич. поля. В этом пределе вероятность пробоя Зинера определяется в осн. экспонентой, в показателе к-рой стоит большая отрицат. величина, пропорциональная отношению ширины запрещённой энергетич. зоны к энергии, набираемой электроном в приложенном поле на расстоянии, равном размеру элементарной ячейки.

Похожий эффект проявляется в туннельных диодах , в к-рых зоны наклонены благодаря полупроводникам р - и n -типа по обе стороны от границы их соприкосновения. Туннелирование осуществляется благодаря тому, что в зоне, куда переходит носитель , имеется конечная плотность незанятых состояний.

Благодаря Т. э. возможен электрич. ток между двумя металлами, разделёнными тонкой диэлектрич. перегородкой. Эти металлы могут находиться как в нормальном, так и в сверхпроводящем состоянии. В последнем случае может иметь место Джозефсона эффект .

Т. э. обязаны такие явления, происходящие в сильных электрич. полях, как автоионизация атомов (см. Ионизация полем автоэлектронная эмиссия из металлов. В обоих случаях электрич. поле образует барьер конечной прозрачности. Чем сильнее электрич. поле, тем прозрачнее барьер и тем сильнее электронный ток из металла. На этом принципе основан сканирующий туннельный микроскоп - прибор, измеряющий туннельный ток из разных точек исследуемой поверхности и дающий информацию о характере её неоднородности.

Т. э. возможен не только в квантовых системах, состоящих из одной частицы. Так, напр., низкотемпературное движение в кристаллах может быть связано с туннелированием конечной части дислокации, состоящей из многих частиц. В такого рода задачах линейную дислокацию можно представить как упругую струну, лежащую первоначально вдоль оси у в одном из локальных минимумов потенциала V(x, у) . Этот потенциал не зависит от у , а его рельеф вдоль оси х представляет собой последовательность локальных минимумов, каждый из к-рых находится ниже другого на величину, зависящую от приложенного к кристаллу механич. . Движение дислокации под действием этого напряжения сводится к туннелированию в соседний минимум определ. отрезка дислокации с последующим подтягиванием туда оставшейся её части. Такого же рода туннельный механизм может отвечать за движение волн зарядовой плотности в Пайерлса (см. Пайерлса переход ).

Для расчётов эффектов туннелирования таких многоразмерных квантовых систем удобно использовать квазиклассич. представление волновой ф-ции в виде где S -классич. действие системы. Для Т. э. существенна мнимая часть S , определяющая затухание волновой ф-ции в классически недоступной области. Для её вычисления используется метод комплексных траекторий.

Квантовая частица, преодолевающая потенц. барьер, может быть связана с термостатом. В классич. механике это соответствует движению с трением. Тем самым, для описания туннелирования необходимо привлечение теории, получившей назв. диссипативной . Такого рода соображения необходимо использовать для объяснения конечного времени жизни токовых состояний контактов Джозефсона. В этом случае происходит туннелирование эфф. квантовой частицы через барьер, а роль термостата играют нормальные электроны.

Лит.: Ландау Л. Д., Лифшиц Е. М., Квантовая механика, 4 изд., М., 1989; Займан Дж., Принципы теории твердого тела, пер. с англ., 2 изд., М., 1974; Базь А. И., Зельдович Я. Б., Переломов А. М., Рассеяние, реакции и распады в нерелятивистской квантовой механике, 2 изд., М., 1971; Туннельные явления в твердых телах, пер. с англ., М., 1973; Лихарев К. К., Введение в динамику джозефсоновских переходов, М., 1985. Б. И. Ивлев .

ТУННЕЛЬНЫЙ ЭФФЕКТ , квантовый эффект, состоящий в проникновении квантовой частицы сквозь область пространства, в к-рой согласно законам классич. физики нахождение частицы запрещено. Классич. частица, обладающая полной энергией E и находящаяся в потенц. поле, может пребывать лишь в тех областях пространства, в к-рых ее полная энергия не превышает потенц. энергию U взаимодействия с полем. Поскольку волновая ф-ция квантовой частицы отлична от нуля во всем пространстве и вероятность нахождения частицы в определенной области пространства задается квадратом модуля волновой ф-ции, то и в запрещенных (с точки зрения классич. механики) областях волновая ф-ция отлична от нуля.

Т уннельный эффект удобно иллюстрировать на модельной задаче об одномерной частице в поле потенциала U(x) (x - координата частицы). В случае симметричного двухъямного потенциала (рис. а)волновая ф-ция должна "умещаться" внутри ям, т. е. она представляет собой стоячую волну. Дискретные энерге-тич. уровни, к-рые расположены ниже барьера, разделяющего минимумы потенциала, образуют близко расположенные (почти вырожденные) пары . Разность энергетич. уровней, составляющих пару , наз. туннельным расщеплени-е м, эта разность обусловлена тем, что точное решение задачи (волновая ф-ция) для каждого из квантовых состояний дело-кализовано в обоих минимумах потенциала и все точные решения отвечают невырожденным уровням (см. Вырождение энергетических уровней). Вероятность туннельного эффекта определяется коэффициентом прохождения сквозь барьер волнового пакета, к-рый описывает нестационарное состояние частицы, локализованной в одном из минимумов потенциала.





Кривые потенц. энергии U (х)частицы в случае, когда на нее действует сила притяжения (а - две потенц. ямы, б - одна потенц. яма), и в случае, когда на частицу действует сила отталкивания (отталкивательный потенциал, в). E -полная энергия частицы, х - координата. Тонкими линиями изображены волновые ф-ции.

В потенц. поле с одним локальным минимумом (рис. б)для частицы с энергией E, большей потенциала взаимодействия при c =, дискретные энергетич. состояния отсутствуют, но существует набор квазистационарных состояний, в к-рых велика относит. вероятность нахождения частицы вблизи минимума. Волновые пакеты, отвечающие таким квазистационарным состояниям, описывают метастабильные квантовые состояния ; волновые пакеты расплываются и исчезают вслед-ствие туннельного эффекта. Эти состояния характеризуются временем жизни (вероятностью распада) и шириной энергетич. уровня.

Для частицы в отталкивательном потенциале (рис. в)волновой пакет, описывающий нестационарное состояние по одну сторону от потенц. барьера, даже если энергия частицы в этом состоянии меньше высоты барьера, может с определенной вероятностью (наз. вероятностью проникновения или вероятностью туннелирования) проходить по др. сторону барьера.

Наиб. важные для химии проявления туннельного эффекта: 1) туннельные расщепления дискретных колебат., вращат. и электронно-ко-лебат. уровней. Расщепления колебат. уровней в молекулах с неск. эквивалентными равновесными ядерными конфигурациями - это инверсионное удвоение (в молекулах типа аммиака), расщепление уровней в молекулах с заторможенным внутр. вращением (этан , толуол) или в нежестких молекулах , для к-рых допустимы внутримол. перегруппировки, приводящие к эквивалентным равновесным конфигурациям (напр., PF 5). Если разл. эквивалентные минимумы на поверхности потенциальной энергии оказываются разделенными потенц. барьерами (напр., равновесные конфигурации для право- и левовращающих изомеров сложных молекул), то адекватное · описание реальных мол. систем достигается с помощью, локализованных волновых пакетов. В этом случае пара дело-кализованных в двух минимумах стационарных состояний неустойчива: под действием очень малых возмущений возможно образование двух состояний, локализованных в том или ином минимуме.

Расщепление квазивырожденных групп вращат. состояний (т. наз. вращательных к л а с т е r о в) также обусловлено туннелированием мол. системы между окрестностями неск. эквивалентных стационарных осей вращения. Расщепление электронно-колебат. (вибронных) состояний происходит в случае сильных Яна - Теллера эффектов. С туннельным расщеплением связано и существование зон, образуемых электронными состояниями отдельных атомов или мол. фрагментов в твердых телах с периодич. структурой.

2) Явления переноса частиц и элементарных возбуждений. Данная совокупность явлений включает нестационарные процессы, описывающие переходы между дискретными состояниями и распад квазистационарных состояний. Переходы между дискретными состояниями с волновыми ф-циями, локализованными в разл. минимумах одного адиабатич. потенциала, соответствуют разнообразным хим. р-циям. Туннельный эффект всегда вносит нек-рый вклад в скорость р-ции, однако этот вклад существен только при низких т-рах, когда надбарьер-ный переход из исходного состояния в конечное маловероятен из-за низкой заселенности соответствующих уровней энергии. Туннельный эффект проявляется в неаррениусовском поведении скорости r -ции; характерный пример - рост цепи при ради-ационно-инициированной полимеризации твердого формальдегида . Скорость этого процесса при т-ре ок. 140 К удовлетворительно описывается законом Аррениуса с