Матричный синтез: описание, особенности и свойства. Нуклеиновые кислоты

В основе передачи и реализации наследственной информации лежат реакции матричного синтеза. Их всего три: репликация ДНК, транскрипция и трансляция. Все эти реакции относятся к реакциям пластического обмена, требуют затрат энергии и участия ферментов.

Репликация.

Репликация – самоудвоение молекул ДНК – лежит в основе передачи наследственной информации из поколения в поколение. В результате репликации одной материнской молекулы ДНК образуются две дочерние, каждая из которых представляет собой двойную спираль, в которой одна нить ДНК – материнская, а другая вновь – синтезированная. Для репликации необходимы различные ферменты, нуклеотиды и энергия.

С помощью особых ферментов разрываются водородные связи, соединяющие комплементарные основания двух цепей материнской ДНК. Нити ДНК расходятся. Молекулы фермента ДНК-полимеразы движутся вдоль материнских цепей ДНК и последовательно соединяют нуклеотиды, формируя дочерние цепи ДНК. Процесс присоединения нуклеотидов идет по принципу комплементарности. В результате формируются две молекулы ДНК идентичные материнской и друг другу.

Биосинтез белка.

Биосинтез белка, т.е. процесс реализации наследственной информации, протекает в два этапа. На первом этапе информация о первичной структуре белка переписывается с ДНК на иРНК. Этот процесс называется транскрипцией. Второй этап – трансляция – происходит на рибосомах. В ходе трансляции происходит синтез белка из аминокислот в соответствии с последовательностью записанной в иРНК, т.е. последовательность нуклеотидов переводится в последовательность аминокислот. Таким образом, процесс реализации наследственной информации можно выразить схемой:

ДНК → иРНК → белок → свойство, признак

Транскрипция – синтез информационной РНК на матрице ДНК. Данный процесс происходит там, где есть ДНК. У эукариот транскрипция происходит в ядре, митохондриях и хлоропластах (у растений), а у прокариот непосредственно в цитоплазме. При транскрипции молекула ДНК является матрицей, а иРНК продуктом реакции.



Транскрипция начинается с разделения цепей ДНК, которое происходит также как при репликации (водородные связи разрываются с помощью ферментов). Затем фермент РНК-полимераза последовательно по принципу комплементарности соединяет нуклеотиды в цепь, синтезируя молекулу иРНК. Образовавшаяся молекула иРНК отделяется и направляется в цитоплазму «на поиски» рибосомы.

Синтез белка на рибосомах называется трансляцией . Трансляция у эукариот происходит на рибосомах, которые находятся в цитоплазме, на поверхности ЭПС, в митохондриях и в хлоропластах (у растений), а у прокариот на рибосомах в цитоплазме. В трансляции участвуют иРНК, тРНК, рибосомы, аминокислоты, молекулы АТФ, ферменты.

· Аминокислоты служат материалом для синтеза молекулы белка.

· АТФ является источником энергии для соединения аминокислот друг с другом.

· Ферменты участвуют в присоединении аминокислот к тРНК и в соединении аминокислот друг с другом.

· Рибосомы состоят из молекул рРНК и белка, формирующих активный центр, в котором и происходят основные события трансляции.

· Информационная РНК в данном случае является матрицей для синтеза молекулы белка. Триплеты иРНК, каждый из которых кодирует какую-то аминокислоту, называются кодонами .

· Транспортные РНК подносят аминокислоты к рибосомам и участвуют в переводе последовательности нуклеотидов в последовательность аминокислот. Транспортные РНК, как и другие виды РНК, синтезируются на матрице ДНК. Они имеют вид клеверного листа (рис. 28.3). Три нуклеотида, расположенные на вершине центральной петли молекулы тРНК образуют антикодон .

Ход трансляции.

Трансляция начинается со связывания иРНК с рибосомой. Рибосома движется по иРНК, каждый раз перемещаясь на один триплет. В активном центре рибосомы могут одновременно находиться два триплета (кодона) иРНК. К каждому из этих кодонов подходит тРНК, имеющая комплементарный антикодон и несущая определенную аминокислоту. Между кодонами и антикодонами образуются водородные связи, удерживающие тРНК в активном центре. В это время образуется пептидная связь между аминокислотами. Растущая полипептидная цепь «подвешивается» на тРНК, которая вошла в активный центр последней. Рибосома продвигается на один триплет вперед, в результате чего в активном центре оказывается новый кодон и соответствующая тРНК. Освободившаяся тРНК отделяется от иРНК и отправляется за новой аминокислотой.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Реакции матричного синтеза

В живых системах встречается реакции, неизвестные в неживой природе -- реакции матричного синтеза.

Термином "матрица" в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки -- на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы, из которых синтезируется полимер, -- нуклеотиды или аминокислоты -- в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит "сшивание" мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти "сборка" только какого-то одного полимера.

Матричный тип реакций -- специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого -- его способности к воспроизведению себе подобного.

К реакциям матричного синтеза относят:

1. репликацию ДНК-- процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться -- процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию - синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию-- синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4. синтез РНК или ДНК на РНК вирусов

Таким образом, биосинтез белка - это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки, составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться. Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК. Каждой аминокислоте соответствует строго специфическая т-РНК, которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника - матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план -- в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок.

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка.

А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы. матричный клетка нуклеиновый ген

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому.

В процессе синтеза белка участвует одновременно не одна, а несколько рибосом -- полирибосомы.

Основные этапы передачи генетической информации:

синтез на ДНК как на матрице и-РНК (транскрипция)

синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция).

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка -- рибосомам. Лишь после этого наступает следующий этап -- трансляция.

У прокариот транскрипция и трансляция идут одновременно.

Таким образом, местом синтеза белков и всех ферментов в клетке являются рибосомы -- это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК. Одна из цепочек ДНК имеет такую последовательность нуклеотидов: АГТАЦЦГАТАЦТЦГАТТТАЦГ... Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы? Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность: ТАЦТГГЦТАТГАГЦТАААТГ... Тип 2. Кодирование белков. Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин... С какой последовательности нуклеотидов начинается ген, соответствующий этому белку? Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько. АААЦАААЦУГЦГГЦУГЦГААГ Тип 3. Декодирование молекул ДНК. С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов: АЦГЦЦЦАТГГЦЦГГТ... По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК: УГЦГГГУАЦЦГГЦЦА... Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту: Цистеин-глицин-тирозин-аргинин-пролин-...

2. Конспект по биологии в 10 «А» классе по теме: Биосинтез белков

Цель: Познакомить с процессами транскрипции и трансляции.

Образовательная. Ввести понятия гена, триплета, кодона, кода ДНК, транскрипции и трансляции, объяснить сущность процесс биосинтеза белков.

Развивающая. Развитие внимания, памяти, логического мышления. Тренировка пространственного воображения.

Воспитательная. Воспитание культуры труда на уроке, уважения к чужому труду.

Оборудование: Доска, таблицы по биосинтезу белков, магнитная доска, динамическая модель.

Литература: учебники Ю.И. Полянского, Д.К. Беляева, А.О. Рувинского; «Основы цитологии» О.Г. Машановой, «Биология» В.Н. Ярыгиной, «Гены и геномы» Сингер и Берг, школьная тетрадь, Н.Д.Лисова учеб. Пособие для 10 класса «Биология».

Методы и методические приемы: рассказ с элементами беседы, демонстрация, тестирование.

Тест по пройденному материалу.

Раздать листочки и варианты теста. Все тетради и учебники закрыты.

1 ошибка при сделанном 10 вопросе это 10, при не сделанном 10-м - 9, и т.д.

Запишите тему сегодняшнего урока: Биосинтез белков.

Вся молекула ДНК поделена на отрезки, кодирующие аминокислотную последовательность одного белка. Запишите: ген - это участок молекулы ДНК, в котором содержится информация о последовательности аминокислот в одном белке.

Код ДНК. У нас есть 4 нуклеотида и 20 аминокислот. Как же их сопоставить? Если бы 1 нуклеотид кодировал 1 а/к, => 4 а/к; если 2 нуклеотида - 1 а/к - (сколько?) 16 аминокислот. Поэтому 1 аминокислоту кодирует 3 нуклеотида - триплет (кодон). Посчитайте сколько возможно комбинаций? - 64 (3 из них это знаки препинания). Достаточно и даже с избытком. Зачем избыток? 1 а/к может кодироваться 2-6 триплетами для повышения надежности хранения и передачи информации.

Свойства кода ДНК.

1) Код триплетен: 1 аминокислоту кодирует 3 нуклеотида. 61 триплет кодирует а/к, причем один АУГ означает начало белка, а 3 - знаки препинания.

2) Код вырожден - 1 а/к кодирует 1,2,3,4,6 триплетов

3) Код однозначен - 1 триплет только 1 а/к

4) Код не перекрывающийся - от 1 и до последнего триплета ген кодирует только 1 белок

5) Код непрерывен - внутри гена нет знаков препинания. Они только между генами.

6) Код универсален - все 5 царств имеют один и тот же код. Только в митохондриях 4 триплета отличаются. Дома подумайте и скажите почему?

Вся информация содержится в ДНК, но сама ДНК в биосинтезе белка участия не принимает. Почему? Информация переписывается на и-РНК, и уже на ней в рибосоме идет синтез белковой молекулы.

ДНК РНК белок.

Скажите есть ли организмы у которых обратный порядок: РНК ДНК?

Факторы биосинтеза:

Наличие информации, закодированной в гене ДНК.

Наличие посредника и-РНК для передачи информации от ядра к рибосомам.

Наличие органоида- рибосомы.

Наличие сырья - нуклеотидов и а/к

Наличие т-РНК для доставки аминокислот к месту сборки

Наличие ферментов и АТФ (Зачем?)

Процесс биосинтеза.

Транскрипция.(показать на модели)

Переписывание последовательности нуклеотидов с ДНК на и-РНК. Биосинтез молекул РНК идет на ДНК по принципам:

Матричного синтеза

Комплиментарности

ДНК и-РНК

ДНК при помощи специального фермента расшивается, другой фермент начинает на одной из цепей синтезировать и-РНК. Размер и-РНК это 1 или несколько генов. И-РНК выходит из ядра через ядерные поры и идет к свободной рибосоме.

Трансляция. Синтез полипептидных цепей белков, осуществляемая на рибосоме.

Найдя свободную рибосому и-РНК продевается через нее. И-РНК входит в рибосому триплетом АУГ. Одновременно в рибосоме может находиться только 2 триплета (6 нуклеотидов).

Нуклеотиды в рибосоме у нас есть теперь надо туда как-то доставить а/к. С помощью чего?- т-РНК. Рассмотрим ее строение.

Транспортные РНК (т-РНК) состоят примерно из 70 нуклеотидов. Каждая т-РНК имеет акцепторный конец, к которому присоединяется аминокислотный остаток, и адаптерный конец, несущий тройку нуклеотидов, комплементарную какому-либо кодону и-РНК, потому этот триплет назвали антикодоном. Сколько типов т-РНК нужно в клетке?

Т-РНК с соответствующей а/к, пытается присоединиться к и-РНК. Если антикодон комплиментарен кодон, то присоединяется и возникает связь, которая служит сигналом для передвижения рибосомы по нити и-РНК на один триплет.

А/к присоединяется к пептидной цепочке, а т-РНК, освободившись от а/к выходит в цитоплазму в поисках другой такой же а/к.

Пептидная цепочка, таким образом, удлиняется до тех пор, пока не закончится трансляция, и рибосома не соскочит с и-РНК. На одной и-РНК может помещаться несколько рибосом (в учебнике рисунок в п.15). Белковая цепь поступает в ЭПС, где приобретает вторичную, третичную или четвертичную структуру. Весь процесс изображен в учебнике рис.22 - дома найдите ошибку в этом рисунке - получите 5)

Скажите, каким образом эти процессы идут о прокариот, если у них нет ядра?

Регуляция биосинтеза.

Каждая хромосома в линейном порядке разделена на опероны, состоящие из гена регулятора и структурного гена. Сигналом для гена регулятора является либо субстрат, либо конечные продукты.

1.Найдите аминокислоты закодированные во фрагменте ДНК.

Т-А-Ц-Г-А-А-А-А-Т-Ц-А-А-Т-Ц-Т-Ц-У-А-У- Решение:

А-У-Г-Ц-У-У-У-У-А-Г-У-У-А-Г-А-Г-А-У-А-

МЕТ ЛЕЙ ЛЕЙ ВАЛ АРГ АСП

Надо составить фрагмент и-РНК и разбить на триплеты.

2.Найдите антикодоны т-РНК для переноса указанных аминокислот к месту сборки. Мет, три, фен, арг.

Домашнее задание параграф 29.

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

Вариант 1

1. Генетический код - это

а) система записи порядка расположения аминокислот в белке с помощью нуклеотидов ДНК

б) участок молекулы ДНК из 3х соседних нуклеотидов, отвечающий за постановку определенной аминокислоты в молекуле белка

в) свойство организмов передавать генетическую информацию от родителей потомству

г) единица считывания генетической информации

40. Каждая аминокислота кодируется тремя нуклеотидами - это

а) специфичность

б) триплетность

в) вырожденность

г) неперекрываемость

41. Аминокислоты шифруются более чем одним кодоном - это

а) специфичность

б) триплетность

в) вырожденность

г) неперекрываемость

42. У эукариот один нуклеотид входит в состав только одного кодона - это

а) специфичность

б) триплетность

в) вырожденность

г) неперекрываемость

43. Все живые организмы на нашей планете имеют одинаковый генетический код - это

а) специфичность

б) унивесальность

в) вырожденность

г) неперекрываемость

44. Разделение по три нуклеотида на кодоны чисто функциональное и существует только на момент процесса трансляции

а) код без запятых

б) триплетность

в) вырожденность

г) неперекрываемость

45. Количество смысловых кодонов в генетическом коде

Размещено на Allbest.ru

...

Подобные документы

    Изучение строения гена эукариот, последовательности аминокислот в белковой молекуле. Анализ реакции матричного синтеза, процесса самоудвоения молекулы ДНК, синтеза белка на матрице и-РНК. Обзор химических реакций, происходящих в клетках живых организмов.

    презентация , добавлен 26.03.2012

    Основные виды нуклеиновых кислот. Строение и особенности их строения. Значение нуклеиновых кислот для всех живых организмов. Синтез белков в клетке. Хранение, перенос и передача по наследству информации о структуре белковых молекул. Строение ДНК.

    презентация , добавлен 19.12.2014

    Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.

    презентация , добавлен 14.04.2014

    Первичная, вторичная и третичная структуры ДНК. Свойства генетического кода. История открытия нуклеиновых кислот, их биохимические и физико-химические свойства. Матричная, рибосомальная, транспортная РНК. Процесс репликации, транскрипции и трансляции.

    реферат , добавлен 19.05.2015

    Сущность, состав нуклеотидов, их физические характеристики. Механизм редупликации дезоксирибонуклеиновой кислоты (ДНК), транскрипция ее с переносом наследственной информации на РНК и механизм трансляции - синтез белка, направляемый этой информацией.

    реферат , добавлен 11.12.2009

    Особенности применения метода ядерного магнитного резонанса (ЯМР) для исследования нуклеиновых кислот, полисахаридов и липидов. Исследование методом ЯМР комплексов нуклеиновых кислот с протеинами и биологических мембран. Состав и структура полисахаридов.

    курсовая работа , добавлен 26.08.2009

    Нуклеотиды как мономеры нуклеиновых кислот, их функции в клетке и методы исследования. Азотистые основания, не входящие в состав нуклеиновых кислот. Строение и формы дезоксирибонуклеиновых кислот (ДНК). Виды и функции рибонуклеиновых кислот (РНК).

    презентация , добавлен 14.04.2014

    История изучения нуклеиновых кислот. Состав, структура и свойства дезоксирибонуклеиновой кислоты. Представление о гене и генетическом коде. Изучение мутаций и их последствий в отношении организма. Обнаружение нуклеиновых кислот в растительных клетках.

    контрольная работа , добавлен 18.03.2012

    Сведения о нуклеиновых кислотах, история их открытия и распространение в природе. Строение нуклеиновых кислот, номенклатура нуклеотидов. Функции нуклеиновых кислот (дезоксирибонуклеиновая - ДНК, рибонуклеиновая - РНК). Первичная и вторичная структура ДНК.

    реферат , добавлен 26.11.2014

    Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

ДНК -линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных цепей. Мономерами ДНК являются нуклеотиды.

Каждый нуклеотид ДНК состоит из пуринового (А - аденин или Г - гуанин) или пиримидинового (Т - тимин или Ц - цитозин) азотистого основания, пятиуглеродного сахара - дезоксирибозы и фосфатной группы.

Молекула ДНК имеет следующие параметры: ширина спирали около 2 нм, шаг, или полный оборот спирали, - 3,4 нм. В одном шаге содержится 10 комплементарных пар нуклеотидов.

Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина - цитозин. Пара А-Т соединена двумя водородными связями, а пара Г-Ц - тремя.

Остов цепей ДНК образован сахарофосфатными остатками.

Репликация ДНК - это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов.

На каждой из цепей, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Синтез дочерних молекул на соседних цепях идет с разной скоростью. На одной цепи новая молекула собирается непрерывно, на другой - с некоторым отставанием и фрагментарно. После завершения процесса фрагменты новых молекул ДНК сшиваются ферментом ДНК-лигазой. Так, из одной молекулы ДНК возникает две, являющиеся точной копией друг друга и материнской молекулы. Такой способ репликации называют полуконсервативным.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что и происходит при делении соматических клеток.

Репарация ДНК - механизм, обеспечивающий способность к исправлению нарушенной последовательности нуйлеотидов в молекуле ДНК.

Если при репликации ДНК последовательность нуклеотидов в ее молекуле нарушается в силу каких-либо причин, то в большинстве случаев эти повреждения устраняются клеткой самостоятельно. Изменение обычно происходит в одной из цепей ДНК. Вторая цепь остается неизмененной. Поврежденный участок первой цепи может «вырезаться» с помощью ферментов - ДНК репарирующих нуклеаз. Другой фермент - ДНК-полимераза копирует информацию с неповрежденной цепи, вставляя необходимые нуклеотиды в поврежденную цепь. Затем ДНК-лигаза «сшивает» молекулу ДНК, и поврежденная молекула восстанавливается.

РНК - линейный полимер, состоящий, как правило, из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар - рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.

Матричная, или информационная, РНК синтезируется в ядре при участии фермента РНК-полимеразы, комплементарна участку ДНК, на котором происходит синтез, составляет 5% РНК клетки. Рибосомная РНК синтезируется в ядрышке и входит в состав рибосом, составляет 85% РНК клетки. Транспортная РНК (более 40 видов) переносит аминокислоты к месту синтеза белка, имеет форму клеверного листа и состоит из 70-90 нуклеотидов.

К реакциям матричного синтеза относят репликацию ДНК, синтез РНК на ДНК (транскрипцию), синтез белка на мРНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.

При транскрипции фермент РНК-полимераза присоединяется к группе нуклеотидов ДНК - промотору. Промотор указывает место, с которого должен начаться синтез мРНК. Она строится из свободных нуклеотидов комплементарно молекуле ДНК. Фермент работает до тех пор, пока не встретит еще одну группу нуклеотидов ДНК - стоп-сигнал, возвещающий о конце синтеза мРНК.

Молекула мРНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей. Процесс перевода информации, содержащейся в последовательности нуклеотидов мРНК, в последовательность аминокислот в полипептиде называется трансляцией.

Определенная аминокислота доставляется к рибосомам определенным видом тРНК.

В 1869 г. швейцарский биохимик Иоганн Фридрих Мишер впервые обнаружил, выделил из ядер клеток и описал ДНК. Но только в 1944 г. О. Эйвери, С. Маклеодом и М. Макарти была доказана генетическая роль ДНК, т. е. было достоверно установлено, что передача наследственной информации связана с дезоксирибонуклеиновой кислотой. Это открытие явилось мощным фактором, стимулирующим изучение наследственности на молекулярном уровне. С тех пор началось бурное развитие молекулярной биологии и генетики.

Нуклеиновые кислоты (от лат. nucleus - ядро) - это природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах. В их состав входят: углерод (С), водород (Н), кислород (О), фосфор (Р). Нуклеиновые кислоты представляют собой нерегулярные биополимеры, состоящие из мономеров - нуклеотидов. В состав каждого нуклеотида входят:

· азотистое основание,

· простой углерод - 5-углеродный сахар пентоза (рибоза или дезоксирибоза),

· остаток фосфорной кислоты.

Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота - ДНК, содержащая дезоксирибозу, и рибонуклеиновая кислота - РНК, содержащая рибозу.

Рассмотрим каждый тип нуклеиновых кислот.

ДНК содержится почти исключительно в ядре клетки, иногда в органоидах: митохондриях, пластидах. ДНК - это полимерное соединение с постоянным (стабильным) содержанием в клетке.

Строение ДНК. По своей структуре молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали (рис. 1).

Создана модель структуры ДНК в 1953 г. Д. Уотсоном и Ф. Криком, за что оба были удостоены Нобелевской премии. Ширина двойной спирали всего около 0,002 мкм (20 ангстрем), зато длина ее исключительно велика - до нескольких десятков и даже сотен микрометров (для сравнения: дли­на самой крупной белковой молекулы в развернутом виде не превышает 0,1 мкм).

Нуклеотиды расположены друг от друга на расстоянии - 0,34 нм, а на один виток спирали приходится 10 нуклеотидов. Молекулярная масса ДНК велика: она составляет десятки, и даже сотни миллионов. Например, молекулярная масса r ) самой крупной хромосомы дрозофилы равна 7,9 10 10 .

Основной структурной единицей одной цепи является нуклеотид, состоящий из азотистого основания, дезоксирибозы и фосфатной группы. ДНК содержит 4 вида азотистых оснований:

· пуриновые - аденин (А) и гуанин (Г),

· пиримидиновые - цитозин (Ц) и тимин (Т).

Суммарное количество пуриновых оснований равно сумме пиримидиновых.

Нуклеотиды ДНК тоже будут 4 видов соответственно: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т), Все нуклеотиды ДНК соединены в полинуклеотидную цепь за счет остатков фосфорных кислот, расположенных между дезоксирибозами. В полинуклеотидной цепи может быть до 300 000 и более нуклеотидов.

Таким образом, каждая цепь ДНК представляет полинуклеотид, в котором в строго определенном порядке расположены нуклеотиды. Азотистые основания подходят друг к другу настолько близко, что между ними возникают водородные связи. Четко проявляется в их расположении важная закономерность: аденин (А) одной цепи связан с тимином (Т) другой цепи двумя водородными связями, а гуанин (Г) одной цепи связан тремя водородными связями с цитозином (Ц) другой цепи, в результате чего формируются пары А-Т и Г-Ц. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, т. е. пространственное и химическое соответствие между парами нуклеотидов (см. рис. 2).

Последовательность соединения нуклеотидов одной цепи противоположна (комплементарна) таковой в другой, т. е. цепи, составляющие одну молекулу ДНК, разнонаправлены, или антипараллельны. Цепи закручиваются вокруг друг друга и образуют двойную спираль. Большое число водородных связей обеспечивает прочное соединение нитей ДНК и придает молекуле устойчивость, сохраняя в то же время ее подвижность - под влиянием ферментов она легко раскручивается (деспирализуется).

Репликация ДНК (редупликация ДНК) - процесс самовоспроизведения (самоудвоения) макромолекул нуклеиновых кислот, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению.

Репликация ДНК происходит в период интерфазы перед клеточным делением. Материнская молекула ДНК (количество цепей ДНК в клетке равно 2n ) под действием ферментов раскручивается с одного конца, а затем из свободных нуклеотидов по принципу комплементарности на обеих цепях достраиваются дочерние полинуклеотидные цепи. В результате матричных реакций возникают две одинаковые по нуклеотидному составу дочерние молекулы ДНК, в которых одна из цепей старая материнская, а другая - новая, вновь синтезированная (количество ДНК в клетке становится равным 4n = 2 X 2n ).

Функции ДНК.

1. Хранение наследственной информации о структуре белков или отдельных ее органоидов. Наименьшей единицей генетической информации после нуклеотида являются три последовательно расположенных нуклеотида - триплет. Последовательность триплетов в полинуклеотидной цепи определяет последовательность расположения аминокислот одной белковой молекулы (первичную структуру белка) и представляет собой ген. Вместе с белками ДНК входят в состав хроматина, вещества, из которого состоят хромосомы ядра клетки.

2. Передача наследственной информации в результате репликаций при клеточном делении от материнской клетки - дочерним.

3. Реализация наследственной информации (хранящейся в виде генов) в результате матричных реакций биосинтеза через выработку специфических для клетки и организма белков. При этом на одной из ее цепей по принципу комплементарности из нуклеотидов окружающей молекулу среды синтезируются молекулы информационной РНК.

РНК - соединение с колеблющимся (лабильным) содержанием в клетке.

Строение РНК. По своей структуре молекулы РНК менее крупные, чем молекулы ДНК с молекулярной массой от 20-30 тыс. (тРНК) до 1 млн (рРНК), РНК - одноцепочечная молекула, построенная так же, как и одна из цепей ДНК. Мономеры РНК - нуклеотиды состоят из азотистого основания, рибозы (пентозы) и фосфатной группы. РНК содержит 4 азотистых основания:

· пуриновые - аденин (А);

· пиримидиновые - гуанин (Г), цитозин (Ц), урацил (У).

В РНК тимин заменен на близкий к нему по строению урацил (нуклеотид - уридиловый. Нуклеотиды соединены в полинуклеотидную цепь так же, как и в ДНК, за счет остатков фосфорных кислот, расположенных между рибозами.

По месту нахождения в клетке среди РНК выделяют: ядерные, цитоплазматические, митохондриальные, пластидные.

По выполняемым функциям среди РНК выделяют: транспортные, информационные и рибосомные.


Транспортные РНК (тРНК)
- одноцепочечные, но имеющие трехмерную структуру «клеверный лист», созданную внутримолекулярными водородными связями (рис. 3). Молекулы тРНК - самые короткие. Состоят из 80-100 нуклеотидов. На их долю приходится около 10% от общего содержания РНК в клетке. Они переносят активированные аминокислоты (каждая тРНК свою аминокислоту, всего известно 61 тРНК) к рибосомам при биосинтезе белка в клетке».

Информационная (матричная) РНК (иРНК, мРНК) - одноцепочечная молекула, которая образуется в результате транскрипции на молекуле ДНК (копирует гены) в ядре и несет информацию о первичной структуре одной белковой молекулы к месту синтеза белка в рибосомах. Молекула иРНК может состоять из 300-3000 нуклеотидов. На долю иРНК приходится 0,5-1% от общего содержания РНК в клетке.

Рибосомные РНК (рРНК) - самые крупные одноцепочечные молекулы, образующие вместе с белками сложные комплексы, поддерживающие структуру рибосом, на которых идет синтез белка.

На долю рРНК приходится около 90% от общего содержания РНК в клетке.

Вся генетическая информация организма (структура его белков), заключена в его ДНК, состоящей из нуклеотидов, объединенных в гены. Напомним, что ген - единица наследственной информации (участок молекулы ДНК), содержащая информацию о структуре одного белка - фермента. Гены, обусловливающие свойства организмов, называют структурными. А гены, которые регулируют проявление структурных генов, называют регуляторными. Проявление (экспрессия) гена (реализация наследственной информации) происходит следующим образом:


Для осуществления экспрессии гена существует генетический код - строго упорядоченная зависимость между основаниями нуклеотидов и аминокислотами (табл. 12).

Таблица 12 Генетический код

Основные свойства генетического кода.

Триплетность - кодирование аминокислот осуществляется тройками (триплетами) оснований нуклеотидов. Количество кодирующих триплетов равно 64 (4 вида нуклеотидов: А, Т, Ц, Г, 4 3 = 64).

Однозначность - каждый триплет кодирует только одну аминокислоту.

Вырожденность - число кодирующих триплетов превышает число аминокислот (64 > 20). Существуют аминокислоты, кодируемые более чем одним триплетом (в составе белков такие аминокислоты встречаются чаще). Есть три триплета, не кодирующие ни одну аминокислоту (УАА, УАГ, УГА). Они называются «нонсенс-кодонами» и играют роль «стоп-сигналов», означающих конец записи гена (общее количество кодирующих кодонов - 61).

Неперекрываемость (непрерывность) - считывание триплетов с ДНК при синтезе иРНК идет строго по трем последовательным нуклеотидам, без перекрывания соседних кодонов. Внутри гена нет «знаков препинания».

Универсальность - одни и те же триплеты кодируют одни и те же аминокислоты у всех организмов, живущих на Земле.

Общепринятые сокращения названий аминокислот:

ФЕН - фенилаланин; ГИС - гистидин;

ЛЕЙ - лейцин; ГЛН - глутамин;

ИЛЕ - изолейцин; ГЛУ - глутаминовая кислота;

МЕТ - метионин; ЛИЗ - лизин;

ВАЛ - валин; АСН - аспарагин;

СЕР - серии; АСП - аспарагиновая кислота;

ПРО - пролин; ЦИС - цистеин;

ТРЕ - треонин; ТРИ - триптофан;

АЛА - аланин; АРГ - аргинин;

ТИР - тирозин; ГЛИ - глицин.

Таким образом, ДНК-носитель всей генетической информации в клетке - непосредственного участия в син­тезе белка (т. е. реализации этой наследственной информации) не принимают. В клетках животных и растений Молекулы ДНК отделены ядерной мембраной от цито плазмы, где происходит синтез белков. К рибосомам - местам сборки белков - высылается из ядра посредник, который несет скопированную информацию и способен пройти через поры ядерной мембраны. Таким посредником является информационная РНК, которая участвует в матричных реакциях.

Матричные реакции - это реакции синтеза новых соединений на основе «старых» макромолекул, выполняющих роль матрицы, т. е. формы, образца для копирования новых молекул. Матричными реакциями реализации наследственной информации, в которых принимают участие ДНК и РНК являются:

1. Репликация ДНК - удвоение молекул ДНК, благодаря которым передача генетической информации осуществляется от поколения к поколению. Матрицей является материнская ДНК, а новыми, образованными по этой матрице - дочерние, вновь синтезированные 2 молекулы ДНК (рис. 4).

2. Транскрипция (лат. transcription - переписывание) - это синтез молекул РНК по принципу комплементарности на матрице одной из цепей ДНК. Происходит в ядре под действием фермента ДНК-зависимой - РНК-полимеразы. Информационная РНК - это од нонитевая молекула, и кодирование гена идет с одной нити двунитевой молекулы ДНК. Если в транскрибируемой нити ДНК стоит нуклеотид Г, то ДНК-полимераза включает Ц в состав иРНК, если стоит Т, то включает А в состав иРНК, если стоит Т, включает У (в состав РНК не входит тимин Т; рис. 5). Язык триплетов ДНК переводится на язык кодонов иРНК (триплеты в иРНК называются кодонами).

В результате транскрипции разных генов синтезируются все виды РНК. Затем иРНК, тРНК, рPHK через поры в ядерной оболочке выходят в цитоплазму клетки для выполнения своих функций.

3. Трансляция (лат. translatio - передача, перевод) - это синтез полипептидных цепей белков на матрице зрелой иРНК, осуществляемый рибосомами. В этом процессе выделяют несколько этапов:

Этап первый - инициация (начало синтеза - цепи). В цитоплазме на один из концов иРНК (именно на тот, с которого начинался синтез молекулы в ядре) вступает рибосома и начинает синтез полипептида. Молекула тРНК, транспортирующая аминокислоту метионин (тРНК мет), соединяется с рибосомой и прикрепляется к началу цепи иРНК (всегда кодом АУГ). Рядом с первой тРНК (не имеющей никакого отношения к синтезирующему белку) присоединяется вторая тРНК с аминокислотой. Если антикодон тРНК, то между аминокислотами возникает пептидная связь, которую образует определенный фермент. После этого тРНК покидает рибосому (уходит в цитоплазму за новой аминокислотой), а иРНК перемещается на один кодон.

Второй этап - элонгация (удлинения цепи). Рибосома перемещается по молекуле иРНК не плавно, а прерывисто, триплет за триплетом. Третья тРНК с аминокислотой связывается своим антикодоном с кодоном иРНК. При установлении комплементарности связи рибосома делает еще шаг на один «кодон», а специфический фермент «сшивает» пептидной связью вторую и третью аминокислоту - образуется пептидная цепь. Аминокислоты в растущей полипептидной цепи соединяются в той последовательности, в которой расположены шифрующие их кодоны иРНК (рис. 6).

Третий этап - терминация (окончание синтеза) цепи. Происходит при трансляции рибосомой одного из трех «нонсенс-кодонов» (УАА, УАГ, УГА). Рибосомы соскакивают с иРНК, синтез белка завершен.

Таким образом, зная порядок расположения аминокислот в молекуле белка, можно определить порядок нуклеотидов (триплетов) в цепи иРНК, а по ней - порядок пар нуклеотидов в участке ДНК и наоборот, учитывая принцип комплементарности нуклеотидов.

Естественно, что в процессе матричных реакций вследствие каких-либо причин (естественных или искусственных) могут происходить изменения - мутации. Это генные мутации на молекулярном уровне - результат различных повреждений в молекулах ДНК. Генные мутации, происходящие на молекулярном уровне, затрагивают, как правило, один или несколько нуклеотидов. Все формы генных мутаций можно разделить на две большие группы.

Первая группа - сдвиг рамки считывания - представляет собой вставки или выпадения одной или нескольких пар нуклеотидов. В зависимости от места нарушения изменяется то или иное количество кодонов. Это наиболее тяжелые повреждения генов, так как в белок будут включены совершенно другие аминокислоты.

На такие делеции и вставки приходится 80% всех спонтанных генных мутаций.

Наиболее повреждающим действием обладают так называемые нонсенс-мутации, которые связаны с появлением кодонов-терминаторов, вызывающих останов ку синтеза белка. Это может привести к преждевременному окончанию синтеза белка, который быстро деградирует. Результат - гибель клетки или изменение характера индивидуального развития.

Мутации, связанные с заменой, выпадением или вставкой в кодирующей части гена фенотипически проявляются в виде замены аминокислот в белке. В зависимости от природы аминокислот и функциональной значимости нарушенного участка, наблюдается полная или частичная потеря функциональной активности белка. Как правило, это выражается в снижении жизнеспособности, изменении признаков организмов и т. д.

Вторая группа - это генные мутации с заменой пар оснований нуклеотидов. Существуют два типа замены оснований:

1. Транзиция - замена одного пуринового на пуриновое основание (А на Г или Г на А) или одного пиримидинового на пиримидиновое (Ц на Т или Т на, Ц).

2. Трансверсия - замена одного пуринового основания на пиримидиновое или наоборот (А на Ц, или Г на Т, или А на У).

Ярким примером трансверсии является серповидно-клеточная анемия, возникающая из-за наследственного нарушения структуры гемоглобина. У мутантного гена, кодирующего одну из цепей гемоглобина, нарушен всего один нуклеотид, и в иРНК происходит замена аденина на урацил (ГАА на ГУА).

В результате происходит изменение биохимического фенотипа, в цепи гемоглобина глутаминовая кислота заменена на валин. Эта замена изменяет поверхность гемоглобиновой молекулы: вместо двояковогнутого диска клетки эритроцитов становятся похожи на серпы и либо закупоривают мелкие сосуды, либо быстро удаляются из кровообращения, что быстро приводит к анемии.

Таким образом, значимость генных мутаций для жизнедеятельности организма неодинакова:

· некоторые «молчащие мутации» не оказывают влияния на структуру и функцию белка (например, замена нуклеотида, не приводящая к замене аминокислот);

· некоторые мутации ведут к полной потере функции белка и гибели клеток (например, нонсенс-мутации);

· другие мутации - при качественном изменении иРНК и аминокислот ведут к изменению признаков организма;

· и, наконец, некоторые мутации, изменяющие свойства белковых молекул, оказывают повреждающее действие на жизнедеятельность клеток - такие мутаций обусловливают тяжелое течение болезней (например, трансверсии).

Третичная структура РНК

Вторичная структура РНК

Молекула рибонуклеиновой кислоты построена из одной полинуклеотидной цепи. Отдельные участки цепи РНК образуют спирализованные петли - "шпильки", за счёт водородных связей между комплементарными азотистыми основаниями A-U и G-C. Участки цепи РНК в таких спиральных структурах антипараллельны, но не всегда полностью комплементарны, в них встречаются неспаренные нуклеотидные остатки или даже одноцепочечные петли, не вписьюающиеся в двойную спираль. Наличие спирализованных участков характерно для всех типов РНК.

Одноцепочечные РНК характеризуются компактной и упорядоченной третичной структурой, возникающей путём взаимодействия спирализованных элементов вторичной структуры. Так, возможно образование дополнительных водородных связей между нуклеотидными остатками, достаточно удалёнными друг от друга, или связей между ОН-группами остатков рибо-зы и основаниями. Третичная структура РНК стабилизирована ионами двухвалентных металлов, например ионами Mg 2+ , связывающимися не только с фосфатными группами, но и с основаниями.

При реакциях матричного синтеза образуются полимеры, строение которых полностью определяется строением матрицы. В основе реакций матричного синтеза лежит комплементарное взаимодействие между нуклеотидами.

Репликация (редупликация, удвоение ДНК)

Матрица – материнская цепочка ДНК
Продукт – новосинтезированная цепочка дочерней ДНК
Комплементарность между нуклеотидами материнской и дочерней цепочек ДНК

Двойная спираль ДНК раскручивается на две одинарных, затем фермент ДНК-полимераза достраивает каждую одинарную цепочку до двойной по принципу комплементарности.

Транскрипция (синтез РНК)

Матрица – кодирующая цепочка ДНК
Продукт – РНК
Комплементарность между нуклеотидами кДНК и РНК

В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

Трансляция (синтез белка)

Матрица – иРНК
Продукт – белок
Комплементарность между нуклеотидами кодонов иРНК и нуклеотидами антикодонов тРНК, приносящих аминокислоты

Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

7. Образование полипептидной цепи из последовательно доставляемых к мРНК тРНК с соответствующими аминокислотами происходит на рибосомах (рис. 3.9).

Рибосомы представляют собой нуклеопротеидные структуры, в которые входят три вида рРНК и более 50 специфических рибосомных белков. Рибосомы состоят из малой и большой субъединиц. Инициация синтеза полипептидной цепи начинается с присоединения малой субъединицы рибосомы к центру связывания на мРНК и всегда происходит при участии метиониновой тРНК особого типа, которая связывается с метиониновым кодоном АУГ и прикрепляется к так называемому Р-участку большой субъединицы рибосомы .



Рис. 3.9. Синтез полипептиднои цепи на рибосоме Показаны также транскрипция мРНК и ее перенос через ядерную мембрану в цитоплазму клетки.

Следующий кодон мРНК , расположенный вслед за АУГ-инициирующим кодоном, попадает в А-участок большой субъединицы рибосомы , где он «подставляется» для взаимодействия с амино-ацил-тРНК, имеющей соответствующий антикодон. После того как подходящая тРНК связалась с кодоном мРНК, находящимся в А-участке, происходит образование пептидной связи с помощью пептидилтрансферазы, входящей в состав большой субъединицы рибосомы, и аминоацил-тРНК превращается в пептидил-тРНК. Это заставляет рибосому продвинуться на один кодон, переместить образованную пептидил-тРНК в Р-участок и освободить А-участок, который занимает следующий по порядку кодон мРНК, готовый к соединению с аминоацил-тРНК, имеющей подходящий антикодон (рис. 3.10).

Происходит рост полипептидной цепи за счет многократного повторения описанного процесса. Рибосома движется вдоль мРНК , высвобождая ее инициирующий участок. На инициирующем участке происходит сборка следующего активного рибосомного комплекса и начинается синтез новой полипептидной цепи. Таким образом к одной молекуле мРНК может присоединиться несколько активных рибосом с образованием полисомы. Синтез полипептида продолжается до тех пор, пока в А-участке не окажется один из трех стоп-кодонов. Стоп-кодон распознается специализированным белком терминации, который прекращает синтез и способствует отделению полипептидной цепи от рибосомы и от мРНК .

Рис. 3.10. Синтез полипептидной цепи на рибосоме . Детализованная схема присоединения к растущей полипептидной цепи новой аминокислоты и участие в этом процессе участков А и Р большой субъединицы рибосомы.

Рибосома и мРНК также разъединяются и готовы начать новый синтез полипептидной цепи (см. рис. 3.9). Остается только напомнить, что белки - это основные молекулы, обеспечивающие жизнедеятельность клетки и организма. Они и ферменты, обеспечивающие весь сложнейший обмен веществ, и структурные белки, составляющие скелет клетки и образующие межклеточное вещество, и белки-транспортеры многих веществ в организме, как, например, гемоглобин, транспортирующий кислород и белки-каналы, обеспечивающие проникновение в клетку и удаление из нее разнообразных соединений.

а) На рибосомах гранулярной ЭПС синтезируются такие белки, которые затем

Либо выводятся из клетки (экспортные белки),
либо входят в состав определённых мембранных структур (собственно мембран, лизосом и т.д.).

б) При этом синтезируемая на рибосоме пептидная цепь проникает своим лидерным концом через мембрану в полость ЭПС, где затем оказывается весь белок и формируется его третичная структура.

2. Здесь же (в просвете цистерн ЭПС) начинается модификация белков - связывание их с углеводами или иными компонентами.

8. Механизмы клеточного деления.