Большая энциклопедия нефти и газа. Принципы количественного определения активности ферментов


Любое изучение свойств ферментов, любое применение их в практической деятельности - в медицине и в народном хозяйстве - всегда связано с необходимостью знания, с какой скоростью протекает ферментативная реакция. Чтобы понять и правильно оценить результаты определения ферментативной активности, нужно совершенно отчётливо представить себе, от каких факторов зависит скорость реакции, какие условия оказывают на неё влияние. Таких условий много. Прежде всего, это соотношение концентрации самих реагирующих веществ: фермента и субстрата. Далее, это всевозможные особенности той среды, в которой протекает реакция: температура, кислотность, наличие солей или других примесей, способных как ускорять, так и замедлять ферментативный процесс, и так далее.

Действие ферментов зависит от ряда факторов, прежде всего от температуры и реакции среды (pH). Оптимальная температура, при которой активность ферментов наиболее высока, находится обычно в пределах 37 – 50˚С. При более низких температурах скорость ферментативных реакций снижается, а при температурах близких к 0˚С практически полностью прекращается. При повышении температуры, скорость также снижается и, наконец, полностью прекращается. Снижение интенсивности ферментов при повышении температуры, объясняется главным образом разрушением входящего в состав фермента белка. Поскольку белки в сухом состоянии денатурируются значительно медленнее, чем оводненные (в виде белкового геля или раствора), инактивирование ферментов в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие споры бактерий или сухие семена могут выдержать нагревание до гораздо более высоких температур, чем семена и споры более увлажненные.

Для большинства известных в настоящее время ферментов определён оптимум РН, при котором они обладают максимальной активностью. Эта величина - важный критерий, служащий для характеристик фермента. Иногда это свойство ферментов используют для их препаративного разделения. Наличие оптимума РН можно объяснить тем, что ферменты представляют собой полиэлектролиты и их заряд зависит от значения РН. Иногда сопутствующие вещества могут изменить оптимум РН, например буферные растворы. В некоторых случаях в зависимости от субстратов ферменты с неярко выраженной специфичностью имеют несколько оптимумов.

Важным фактором, от которого зависит действие ферментов, как установил впервые Сёренсен является активная реакция среды – pH. Отдельные ферменты различаются по оптимальной для их действия величине pH. Так, например пепсин, содержащийся в желудочном соке, наиболее активен в сильнокислой среде (pH 1 – 2); трипсин – протеолитический фермент, выделяемый поджелудочной железой, имеет оптимум действия в слабощелочной среде (pH 8 – 9); папаин, фермент растительного происхождения, оптимально действует в слабокислой среде (pH 5 – 6).

Отсюда следует, что величина (РН оптимум) - весьма чувствительный признак для данного фермента. Она зависит от природы субстрата, состава буферного раствора и поэтому не является истинной константой. Нужно иметь в виду также свойства ферментов как белковых тел, способных к кислотно-щелочной денатурации. Кислотно-щелочная денатурация может привести к необратимым изменениям структуры фермента с утратой его каталитических свойств.

Скорость любого ферментативного процесса в значительной степени зависит от концентрации, как субстрата, так и фермента. Обычно скорость реакции прямо пропорциональна количеству фермента, при условии если содержание субстрата в пределах оптимума или немного выше. При постоянном количестве фермента скорость возрастает с увеличением концентрации субстрата. Эта реакция подчинена закону действующих масс и рассматривается в свете теории Михаэлиса – Ментона, то есть,

V=K(F) ,

V - скорость реакции
K - константа скорости
F - концентрация фермента.

Присутствие в реакционной среде некоторых ионов может активировать образование активного субстрата ферментного комплекса, и в этом случае скорость ферментативной реакции будет увеличивается. Такие вещества получили название активаторов. При этом вещества, катализирующие ферментативные реакции, непосредственного участия в них не принимают. На активность одних ферментов существенно влияет концентрация солей в системе, другие ферменты не чувствительны к присутствию ионов. Однако некоторые ионы абсолютно необходимы для нормального функционирования некоторых ферментов. Известны ионы, которые тормозят активность одних ферментов и являются активаторами для других. К числу специфических активаторов относятся катионы металлов: Na + , K + ,Rb + ,Cs + ,Mg2 + , Ca2 + ,Zn2 + ,Cd2 + ,Cr2 + ,Cu2 + , Mn2 + ,Co2 + ,Ni2 + ,Al3 + . Известно также, что катионы Fe2 + ,Rb + ,Cs + только в присутствии Mg действуют как активаторы, в других случаях эти катионы не являются активаторами. В большинстве случаев один или два иона могут активировать тот или иной фермент. Например, Mg2 + - обычный активатор для многих ферментов, действующий на фосфоримированные субстраты, почти во всех случаях может быть заменён Mn2 + , хотя другие металлы его заменить не могут. Следует заметить, что щелочноземельные металлы вообще конкурируют друг с другом, в частности, Са2 + подавляет активность многих ферментов, активируемых Mg2 + и Zn2 + . Причина этого до настоящего времени не ясна. Механизм влияния ионов металлов - активаторов может быть различным. Прежде всего, металл может быть компонентом активного центра фермента. Но может действовать как связующий мостик между ферментом и субстратом, удерживая субстрат у активного центра фермента. Имеются данные о том, что ионы металлов способны связывать органическое соединение с белками и, наконец, один из возможных механизмов действия металлов как активаторов - это изменение константы равновесия ферментативной реакции. Доказано, что анионы также влияют на активность ряда ферментов. Например, очень велико влияние СI - на активность А - амилазы животного происхождения.

Действие ферментов также зависит от присутствия специфических активаторов или ингибиторов. Так фермент поджелудочной железы энтерокиназа превращает неактивный трипсиноген в активный трипсин. Подобные неактивные ферменты, содержащиеся в клетках и в секретах различных желез, называются проферментами. Фермент может быть конкурентным и неконкурентным. При конкурентном ингибировании ингибитор и субстрат конкурируют между собой, стремясь вытеснить один другого из фермент – субстратного комплекса. Действие конкурентного ингибитора снимается высокими концентрациями субстрата, в то время как действие неконкурентного ингибитора в этих условиях сохраняется. Действие на фермент специфических активаторов и ингибиторов имеет большое значение для регулирования ферментативных процессов в организме.

Наряду с существованием активаторов ферментов известен ряд веществ, присутствие которых тормозит каталитическое действие ферментов или полностью инактивирует его. Такие вещества принято называть ингибиторами. Ингибиторы – это вещества, действующие определённым химическим путём на ферменты и по характеру своего действия, могут быть подразделены на обратимые и необратимые ингибиторы. Для обратимого торможения характерно равновесие между ферментом и ингибитором с определённой константой равновесия. Система такого типа характеризуется определённой степенью торможения, зависящей от концентрации ингибитора, при этом торможение достигается быстро и после этого не зависит от времени. При удалении ингибитора с помощью диализа активность фермента восстанавливается. Необратимое торможение, прежде всего, выражается в том, что диализ не способствует восстановлению активности фермента. И в отличие от обратимого торможения усиливается со временем, так что может наступить полное торможение каталитической активности фермента при очень низкой концентрации ингибитора. В этом случае эффективность действия ингибитора зависит не от константы равновесия, а от константы скорости, определяющей долю фермента, подвергшегося торможению в данном случае.



веществ, ведут активную жизнедеятельность благодаря:

а) всеядности;

б) развитию с метаморфозом;

в) питанию только богатой белками животной пищей;

г) способности к длительному пребыванию под водой.

22. Дыхание у земноводных осуществляется:

а) через жабры;

б) через легкие;

в) через кожу;

г) всеми названными способами.

23. Берцовую кость следует отнести к уровню организации живого:

а) клеточному;

б) тканевому;

в) органному;

г) системному.

На рисунке представлен фрагмент типичной

Электрокардиограммы (ЭКГ) человека, полученной

При втором стандартном отведении.

Интервал Т–Р отражает следующий процесс в

сердце:

а) возбуждение предсердий;

б) восстановление состояния миокарда желудочков

после сокращения;

в) распространение возбуждения по желудочкам;

г) период покоя – диастола.

25. Оптимальная среда для высокой активности желудочных ферментов:

а) щелочная;

б) нейтральная;

в) кислая;

а) тщательно промыть открытые раны, удалить отмершие ткани и обратиться к врачу;

б) как можно скорее поместить руку в холодную воду или обложить кусочками льда;

в) растереть конечность до покраснения и наложить тугую повязку;

г) туго забинтовать обожженную конечность и обратиться к врачу.

Лимфа по лимфатическим сосудам проводится от тканей и органов непосредственно

а) артериальное русло большого круга кровообращения;

б) венозное русло большого круга кровообращения;

в) артериальное русло малого круга кровообращения;

г) венозное русло малого круга кровообращения.

28. Кровь теряет максимальное количество кислорода при прохождении через:

а) легкие;

б) одну из вен руки;

в) капилляры в одной из мышц;

г) правое предсердие и правый желудочек.

29. Нерв, обеспечивающий поворот глазного яблока у человека:

а) тройничный;

б) блоковый;

в) зрительный;

г) лицевой.

30. Объем воздуха, который можно вдохнуть после спокойного выдоха называют:

а) резервным объемом выдоха;

б) резервным объемом вдоха;

в) дыхательным объемом;

г) остаточным объемом.

На рисунке представлена

Реконструкция внешнего облика и

Останков первобытной культуры

Одного из предков современного

Человека. Данного представителя

следует отнести к группе:

а) предшественников человека;

б) древнейших людей;

в) древних людей;

г) ископаемых людей современного

анатомического типа.

32. Корковый слой надпочечников вырабатывает гормон:

а) адреналин;

б) тироксин;

в) кортизон;

г) глюкагон.

33. Лишним звеном в составе единой трофической цепи является:

а) дождевой червь;

б) мятлик;

В природных сообществах роль консументов 2-го порядка, как правило,

могут играть:

а) уклейка, пеночка, косуля, жужелица;

б) кедровка, прыткая ящерица, морская звезда, заяц;

в) утка, собака, паук, скворец;

г) лягушка, виноградная улитка, кошка, канюк.

Показатели активности воды и pH — наиболее важные внутренние факторы, позволяющие определить предрасположенность продукта к росту в нем микроорганизмов, вызывающих порчу. Параллельный контроль данных параметров показывает лучшие результаты, чем их отдельное регулирование. Эффект от совместного влияния этих двух показателей детально описан в рамках барьерной технологии для микробиологического контроля, и является одной из наиболее сложных частей определения потенциально опасных продуктов согласно Управлению по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA).

Настоящая статья посвящена вопросам применения совместного воздействия активности воды и pH для повышения уровня микробиологического контроля при использовании более мягких консервирующих технологий, что может привести к повышению качества и улучшению текстуры пищевых продуктов.

Как активность воды предупреждает рост микроорганизмов

Как и любым другим организмам, микроорганизмам для роста требуется вода. Они поглощают воду перемещая ее сквозь клеточную мембрану. Механизм этого движения зависит от градиента активности воды — вода перемещается от среды с высокой активностью воды за пределами клетки к среде с низкой активностью воды внутри клетки.

Снижение активности воды за пределами клетки до определенного уровня вызывает осмотический стресс: клетка больше не может впитывать воду и переходит в состояние покоя. Клетка не погибает — она просто теряет способность к размножению. Различные микроорганизмы справляются с осмотическим стрессом по-разному. Поэтому пределы роста для каждого микроорганизма отличаются. Некоторые виды плесени и дрожжей приспособились выдерживать очень низкие уровни активности воды.

У каждого микроорганизма свой уровень активности воды при котором репродукция бактерий прекращается. Соответственно, поддержание активности воды ниже этого уровня приведет к тому, что микроорганизм не сможет достаточно размножиться, чтобы вызвать инфекцию или заболевание.

Показатели активности воды для ограничения роста микроорганизмов в продукте

Активность воды Бактерии Плесени Дрожжи Основные продукты
0.97 Clostridium botulinum E

Pseudomonas fluorescens

свежее мясо, свежие и консервированные овощи и фрукты
0.95 Escherichia coli

Clostridium perfringens

Salmonella spp.

Vibrio cholerae

слабосоленый бекон, вареная колбаса, назальный спрей, глазные капли
0.94 Clostridium botulinum A, B

Vibrio parahaemolyticus

Stachybotrys atra
0.93 Bacillus cereus Rhizopus nigricans некоторые сыры, ветчина, выпечка, сгущенное молоко без сахара, суспензии для перорального применения, солнцезащитные лосьоны
0.92 Listeria monocytogenes
0.91 Bacillus subtilis
0.90 Staphylococcus aureus

(anaerobic)

Trichothecium roseum Saccharomyces

cerevisiae

0.88 Candida
0.87 Staphylococcus aureus

(aerobic)

0.85 Aspergillus clavatus сгущенное молоко с сахаром, выдержанные сыры (например, чеддер), копченая колбаса (например, салями), вяленое мясо, бекон, большинство концентрированных фруктовых соков, шоколадный сироп, фруктовый пирог, помадные конфеты, сироп от кашля, обезбаливающие суспензии для перорального применения
0.84 Byssochlamys nivea
0.83 Penicillium expansum

Penicillium islandicum

Penicillium viridicatum

Deharymoces hansenii
0.82 Aspergillus fumigatus

Aspergillus parasiticus

0.81 Penicillium Penicillium cyclopium

Penicillium patulum

0.80 Saccharomyces bailii
0.79 Penicillium martensii
0.78 Aspergillus flavus варенье, мармелад, марципан, фрукты в глазури, меласса, сушеные фиги (инжир), сильносоленая рыба
0.77 Aspergillus niger

Aspergillus ochraceous

0.75 Aspergillus restrictus

Aspergillus candidus

0.71 Eurotium chevalieri
0.70 Eurotium amstelodami
0.62 Saccharomyces rouxii сушеные фрукты, кукурузный сироп, лакрица, зефир, жевательная резинка, сухие корма для животных
0.61 Monascus bisporus
0.60 No microbial proliferation
0.50 No microbial proliferation карамель, ирис, мёд, лапша, мазь для наружного применения
0.40 No microbial proliferation цельный яичный порошок, какао, леденцы от кашля с жидким центром
0.30 No microbial proliferation крекеры, мучные закуски, смеси для выпечки, витаминные таблетки, суппозитории
0.20 No microbial proliferation леденцы, сухое молоко, детские смеси

Ограничение роста микроорганизмов позволяет использовать показатель активности воды для того, чтобы убедиться в безопасности пищевых продуктов. Поэтому измерение активности воды может использоваться как критическая контрольная точка при планировании системы анализа опасных факторов (HACCP).

Возможности для совместного воздействия

Пределы роста, указанные в таблице выше, предполагают, что прочие условия (уровень pH, температура и т.д.) оптимальны для роста микроорганизма. Получается, что если мы возьмём более низкое значение pH продукта и будем контролировать активности воды, то показатель активности воды в этом случае может быть выше, чем указанные в таблице.

Что такое pH

pH — показатель кислотности или щелочности раствора. Значения от 0 до 7 означают кислотность, от 7 до 14 — щелочность. Показатель pH нейтральной дистиллированной воды равен 7. Продукты питания обычно нейтральны или кислотны.

pH ограничивает рост микробов

Точно так же, как и в случае с активностью воды, существуют предельные значения pH, при достижении которого микроорганизмы прекращают рост. В таблице ниже указаны пороговые значения для различных типов микробов.

Значения pH, предельные для роста отдельных видов бактерий

Микроорганизм Минимальное значение
Оптимальное значение
Максимальное значение
Clostridium perfringens 5.5 — 5.8 7.2 8.9
Vibrio vulnificus 5 7.8 10.2
Racillus cereus 4.9 6 — 7 8.8
Campylobacter spp. 4.9 6.5 — 7.5 9
Shigella spp. 4.9 9.3
Vibrio parahaemolyticus 4.8 7.8 — 8.6 11
Clostridium botulinum toxin 4.6 8.5
Clostridium botulinum growth 4.6 8.5
Staphylococcus aureus growth 4 6 — 7 10
Staphylococcus aureus toxin 4.5 7 — 8 9.6
Enterohemorrhagic Escherichia coli 4.4 6 — 7 9
Listeria monocytogenes 4.39 7 9.4
Salmonella spp 4.21 7 — 7.5 9.5
Yersinia enterocolitica 4.2 7.2 9.6

pH-нейтральная среда оптимальна для роста микроорганизмов, однако рост возможен и в более кислых средах. Большинство микроорганизмов прекращает рост при pH 5.0, некоторые могут продолжать размножаться при pH 4.6 и даже 4.4. Исторически принято считать, что уровень pH 4.6 — нижний предел для роста микроорганизмов, однако известно, что некоторые из них могут продолжать расти даже при pH 4.2

Применение pH коррекции

Таким образом, снижение pH — эффективный способ сохранения продуктов и предотвращения распространения микробов, поэтому измерение pH может использоваться как критическая контрольная точка при планировании системы анализа опасных факторов (HACCP)
Также некоторые производители варьируют pH продукта для изменения его вкуса — путем маринования или сквашивания. Для этого продукт подвергают ферментативной реакции или воздействию кислоты (например, уксуса), чтобы стимулировать выработку молочной кислоты. Многие химические реакции pH зависимы и могут быть остановлены или контролируемы путем регулировки pH.

Совместное влияние активности воды и pH

Сочетание таких барьерных факторов, как pH и активность воды, позволяет добиться более эффективного контроля за распространением микроорганизмов. Более того, совместный эффект от этих барьеров выше, чем от каждого из них отдельно. Это значит, что можно эффективно контролировать развитие микроорганизмов при таких показателях активности воды или pH, которые считались бы небезопасными по отдельности. В таблице ниже приведены комбинации этих показателей, которые могут быть использованы для определения того, требуется ли контролировать дополнительные параметры безопасного хранения продукта (температурный режим, время хранения).

Данная таблица актуальна для продуктов, которые были термически обработаны перед упаковкой. Следует помнить, что снижение активности воды и pH не приводит к гибели микроорганизмов, а только к предотвращению их размножения до опасных для человека уровней. Термическая обработка убивает все микроорганизмы, кроме спорогенных, поэтому продукт может быть упакован при более высоких уровнях активности воды и pH — соответствующие значения 0.92 и 4.6 могут считаться безопасными.

Значение активности воды pH: не выше 4.6 pH: выше 4.6 — 5.6 pH: выше 5.6
не выше 0.92 особый температурно-временной режим не требуется особый температурно-временной режим не требуется
выше 0.92 — 0.95 особый температурно-временной режим не требуется особый температурно-временной режим не требуется
выше 0.95 особый температурно-временной режим не требуется требуется контроль качества продукта требуется контроль качества продукта

Следующая таблица актуальна для продуктов, которые не были подвергнуты термообработке, или же были подвергнуты термообработке, но не были упакованы.

Значение активности воды pH: ниже 4.2 pH: 4.2 — 4.6 pH: выше 4.6 — 5.0 pH: выше 5.0
выше 0.88 особый температурно-временной режим не требуется особый температурно-временной режим не требуется особый температурно-временной режим не требуется особый температурно-временной режим не требуется
выше 0.88 — 0.90 особый температурно-временной режим не требуется особый температурно-временной режим не требуется особый температурно-временной режим не требуется требуется контроль качества продукта
выше 0.90 — 0.92 особый температурно-временной режим не требуется особый температурно-временной режим не требуется требуется контроль качества продукта требуется контроль качества продукта
выше 0.92 особый температурно-временной режим не требуется требуется контроль качества продукта требуется контроль качества продукта требуется контроль качества продукта

Еще одна таблица показывает активность воды и pH некоторых популярных продуктов.

Активность воды и pH распространенных пищевых продуктов

Консервированная клубника имеет очень высокий показатель активности воды при довольно низком pH. Присутствие лимонной кислоты обуславливает низкий pH, что позволяет предотвратить рост микроорганизмов при высоком показателе активности воды. Горчица также имеет очень низкий pH и высокий уровень активности воды. Безопасность этих продуктов объясняется низким pH, а не высокой активностью воды. Кленовый сироп безопасен при практический нейтральном pH — в нем много сахара, а значит активность воды будет низкой.
График показывает, что между показателями активности воды и pH нет прямой взаимосвязи. Если в продукт добавлена кислота для снижения pH, это определенным образом повлияет на активность воды, потому что кислотные вещества обычно полярны и взаимодействуют преимущественно с водой. Но, разумеется, снижение pH напрямую не приведет к снижению активности воды.
Как контролировать активность воды
Самый простой способ — высушить или запечь (чтобы сделать это правильно, сначала необходимо понять изотерму сорбции — поглощения влаги) Также активность воды можно контролировать путем добавления гигроскопичных веществ, таких как соль, сахар, высокофруктозный кукурузный сироп, сорбит или мальтодекстрин.

Как контролировать pH

Самый распространенный способ снижения pH — это ферментация. При этом процессе “хорошие” бактерии вырабатывают молочную кислоту, что приводит к снижению pH продукта и предотвращает размножение других микроорганизмов. Маринованные, соленые и квашеные продукты, а также сырокопченая колбаса и оливки производятся с использованием этого метода. pH также можно понизить путем добавления кислоты (уксусной, молочной, лимонной) непосредственно в продукт, либо же добавляя ингредиенты, естественным образом имеющие кислую среду — например, томаты в соусе для спагетти.

Наша компания предлагает решения для простого и быстрого


Оптимальная среда имеет рН 3 - 7 и корректируется в зависимости от соотношения Cr6 и ионов тяжелых металлов в сточных водах. В оптимальных условиях происходит практически одновременное восстановление О0 в Сг3 в осаждение Сг.  

Оптимальная среда имеет рН 3 - 7 и корректируется в зависимости от соотношения Сг6 и иоиов тяжелых металлов в сточных подах. В оптимальных условиях происходит практически одновременное восстановление Сг в Сг3 и осаждение Сг.  


Оптимальная среда имеет рН 3 - 7 и корректируется в зависимости от соотношения Сг. В оптимальных условиях происходит практически одновременное восстановление Сг6 в Сг3 и осаждение Сг.  

Оптимальные среды для развития энтерококков должны иметь, с одной стороны, максимальные питательные свойства, а с другой - сильные ингибиторы, которые, к сожалению, часто бывают небезразличны и для энтерококков. Указанные обстоятельства затрудняют создание быстрых и простых методов индикации этих микроорганизмов.  

Оптимальной средой для размещения подобной информационной системы является Интернет. С помощью языков программирования HTML, JavaScript, Тауасравнительно легко создать иерархическую модель мультимедийных данных, установив при необходимости гипертекстовые связи и обеспечив удобный доступ ко всей или к части имеющейся информации для широкого круга пользователей. Таким образом, кстати, реализованы многочисленные серверы Агентства по охране окружающей среды (EPA - The United States Environmental Protection Agency, http: / / www.  

Оптимальной средой для сили-цирования был расплав, содержащий 72 % (по массе) эквимоль-ной смеси KCl-NaCl, по 14 % Na2SiF6 и NaF, 10 % (по массе) Si от массы расплава. Метод бестокового силици-рования из-за относительно невысоких температур процесса и скоростей насыщения может быть рекомендован для обработки тонкостенных изделий сложной формы.  

Оптимальной средой для размещения подобной информационной системы является Интернет. Гауасравнительно легко создать иерархическую модель мультимедийных данных, установив при необходимости гипертекстовые связи и обеспечив удобный доступ ко всей или к части имеющейся информации для широкого круга пользователей. Таким образом, кстати, реализованы многочисленные серверы Агентства по охране окружающей среды (EPA - The United States Environmental Protection Agency, http: / / www.  

Создание оптимальной среды для человека зависит от многих факторов: от геометрических размеров пространства, в котором он находится, от состояния воздушной среды этого пространства (температуры, влажности, степени чистоты, скорости движения воздуха) и освещенности, условий слухового и зрительного восприятия, видимости. Известно, например, если температура в помещении, в котором человек работает, выше или ниже оптимальной для того или иного функционального процесса, то производительность труда падает. Оптимальные температуры для помещений различного назначения устанавливаются соответствующими нормами проектирования.  


Поэтому оптимальными средами для иодиметрических определений являются нейтральная и слабокислая.  

Такой оптимальной средой для морских животных и растений является морская вода. Солевой состав крови сухопутных животных сильно приближается к составу морской воды. Кровь является внутренней средой организма. Органы, ткани и клетки организма живут как бы погруженными в эту внутреннюю жидкую среду, непрерывно омываясь кровью, лимфой, тканевыми соками. Жизнь возникла в воде, в первозданном океане. В этом океане она прошла первые этапы эволюции. Океан является колыбелью жизни.  

При оптимальных средах и аэрации биомасса клеток нитчатых грибов и дрожжей может составить 2 5 % в пересчете на сухую массу, причем, около 50 % в ней приходится на белки.  

Комментариев:

  • Классификация ферментов
  • Болезни при недостаточной выработке ферментов
  • Дополнительные рекомендации

Ферменты желудка — это химические вещества, которые выполняют роль катализаторов, участвуют во всех обменных процессах, что дает возможность в тысячи раз ускорить и улучшить все реакции при переваривании пищи. А изменение количества ферментов в организме говорит о развитии заболеваний. Ферменты могут отвечать как за одну реакцию, так и за ряд процессов, которые происходят в желудке при поступлении в него пищи.

Активность желудочных ферментов зависит от ряда факторов: это температура, количество и состав пищи, рН-среда, наличие солей, а также других примесей. Оптимальная температура, при которой ферментативная активность будет самой высокой, это 38 — 45° С. При более низких температурах их активность снижается, так как в состав ферментов входят белки, и они разрушаются при более высокой или низкой температуре.

Выделяемая слюна содержит ферменты пищеварения. И они поступают в желудок, при этом включаются в работу , которые, в свою очередь, вырабатывают ферменты и ждут, когда в желудок поступит пища. Однако следует отметить, что пищеварительные ферменты выделяются на определенную пищу, а все запахи и вкусовые качества этой пищи помнит мозг. Выделяются именно те ферменты, которые необходимы для переваривания только этой пищи.

Классификация ферментов

Ферменты можно классифицировать по шести типам их катализируемых реакций. Они делятся на оксидоредуктазу, это могут быть алкогольдегидрогеназа и каталаза, они участвуют в окислительно-восстановительных реакциях.

Вторая группа — это трансфераза, которая способствует переносу одной молекулы на другую. Третья производит гидролиз всех химических связей, и к ним относятся такие ферменты, как липопротеинлипаза, амилаза, трипсин, пепсин и эстераза.

К четвертой группе относится лиаза, которая ускоряет разрыв химических связей, пятая группа — это изомеры, изменяющие в молекуле геометрические конфигурации. Последняя — лигаза, которая образует гидролиз адиназинтрифосфорной кислоты.

Следует отметить, что ферменты обладают высокой избирательной способностью, поэтому есть такие, которые способствуют расщеплению только белков, и к ним относятся протеаза, пепсин, химотрипсин и трипсин. Все они участвуют в процессе переваривания пищевого комка в желудке.

Ферменты, которые расщепляют жиры, это желчные кислоты и липаза, при этом желчная кислота поступает уже в двенадцатиперстную кишку, после того как пищевой комок ощелачивается и поступает из кислой среды в желудок.

В расщеплении пищи, содержащей углеводы, участвуют такие ферменты, как мальтаза, сахароза, лактоза и амилаза.

Переваривание пищи начинается в ротовой полости, когда она измельчается с помощью зубов и при этом обволакивается слюной, в которой находятся ферменты, расщепляющие сахар (это мальтриоза, мальтоза, а также фермент, расщепляющий крахмал, это птиалин или альфа-амилаза).

В самом желудке выделяется такой фермент, как пепсин, он способствует расщеплению белков и превращает их в пептиды, что дает возможность улучшить пищеварение.

Выделяется желатиназа, она расщепляет коллаген и желатин, которые в основном присутствуют в мясных продуктах.

Амилаза, которая присутствует в желудке, способна расщеплять крахмал, но она не имеет особого значения по сравнению с амилазой слюнных желез.

Липаза желудка способна расщеплять трибутирины масла, однако она также играет в пищеварении второстепенную роль. Известно, что процесс пищеварения нужен человеку, чтобы он смог получить все необходимые для его жизнедеятельности элементы питания (это углеводы, жиры, белки, витамины, микроэлементы). В том случае, когда желудок дает сбои, для этого можно применять ферменты для желудка, которые значительно улучшают пищеварение, особенно белков. К ним можно отнести фестал, мезим форте, дигестал, панзинорм и другие.

Ферменты для желудка могут быть в виде натурального желудочного сока, в состав которого входят ферменты абомин, пепсидил, ацедин-пепсин и пепсин.

Вернуться к оглавлению

Болезни при недостаточной выработке ферментов

Известно, что вещества, которые выделяются в стенках желудка, играют решающую роль в пищеварительной системе. Когда их выделение недостаточно, это может быть вызвано курением, употреблением спиртных напитков, злоупотреблением жирной, копченой и соленой пищей. Развиваются желудочно-кишечные заболевания.

Первый признак недостаточности выделения фермента в желудке выражается в виде изжоги, метеоризма и отрыжки, которая появляется в виде непроизвольного выделения газов изо рта, но отрыжку можно считать нормой, так как пища переваривается с помощью кислот. Появляются газы, которые выходят наружу.

Однако это может быть единичным случаем, но интенсивный выход газов из желудка может быть при недостаточной выработке ферментов, что значительно ухудшает переваривание. Человек начинает страдать не только отрыжкой, но и метеоризмом.

Наравне с недостаточной выработкой элементов в желудке может быть и их избыточная выработка, что вызвано дрожжевым грибком из рода кандида. Это приводит к нарушению пищеварения и патологической отрыжке. Такие процессы обычно бывают после курса антибиотикотерапии, когда нарушается естественная флора и может развиться дисбактериоз.

В том случае, когда происходит кислая отрыжка, это говорит о развитии язвенной болезни или гастрите, особенно при повышенной кислотности желудка.

Чтобы устранить отрыжку, следует нормализовать питание, при этом надо исключить все продукты, которые приводят к усиленному газообразованию, принимать препараты, которые нормализуют выработку ферментов.