Нейрофизиология аутогенных регуляций церебрального кровотока. Способ коррекции нарушений ауторегуляции мозгового кровотока

Церебральное перфузионное давление (ЦПД) -

это разница между средним артериальным давле­ нием (АДср) и ВЧД (или церебральным венозным давлением). Если церебральное венозное давление значительно превышает ВЧД, то ЦПД равно раз­ нице между АДср и церебральным венозным давле­ нием. В физиологических условиях ВЧД незначи­тельно отличается от церебрального венозного давления, поэтому принято считать, что ЦПД = = АДср - ВЧД. В норме церебральное перфузион­ное давление составляет 100 мм рт. ст. и зависит главным образом от АДср, потому что ВЧД у здо­рового человека не превышает 10 мм рт. ст.

При выраженной внутричерепной гипертензии (ВЧД > 30 мм рт. ст.) ЦПД и MK могут значитель­но снижаться даже при нормальном АДср. ЦПД < 50 мм рт. ст. проявляется замедлением ритма на ЭЭГ, ЦПД в пределах от 25 до 40 мм рт. ст. - изо­линией на ЭЭГ, а при устойчивом снижении ЦПД менее 25 мм рт. ст. возникает необратимое повреж­дение мозга.

2. Ауторегуляция мозгового кровообращения

В головном мозге, так же как в сердце и почках, даже значительные колебания АД не оказывают существенного влияния на кровоток. Сосуды моз­га быстро реагируют на изменение ЦПД. Сниже­ние ЦПД вызывает вазодилатацию сосудов мозга, увеличение ЦПД - вазоконстрикцию. У здоровых людей MK остается неизменным при колебаниях АДср в пределах от 60 до 160 мм рт. ст. (рис. 25-1). Если АДср выходит за границы этих значений, то ауторегуляция MK нарушается. Увеличение АДср до 160 мм рт. ст. и выше вызывает повреждение ге-матоэнцефалического барьера (см. ниже), чрева­тое отеком мозга и геморрагическим инсультом.

При хронической артериальной гипертонии кривая ауторегуляции мозгового кровообраще­ ния (рис. 25-1) смещается вправо, причем сдвиг затрагивает и нижнюю, и верхнюю границы. При артериальной гипертонии снижение АД до обыч­ных значений (меньше измененной нижней грани­цы) приводит к уменьшению MK, в то время как высокое АД не вызывает повреждения мозга. Дли­тельная гипотензивная терапия может восстано­вить ауторегуляцию мозгового кровообращения в физиологических границах.

Существуют две теории ауторегуляции мозго­вого кровообращения - миогенная и метаболичес­кая. Миогенная теория объясняет механизм ауто­регуляции способностью гладкомышечных клеток церебральных артериол сокращаться и расслаб­ляться в зависимости от АДср. Согласно метаболи­ческой теории, тонус церебральных артериол зави­сит от потребности мозга в энергетических суб­стратах. Когда потребность мозга в энергетических субстратах превышает их доставку, в кровь выде­ляются тканевые метаболиты, которые вызывают церебральную вазодилатацию и увеличение MK. Этот механизм опосредуют ионы водорода (их роль в церебральной вазодилатации описана рань­ше), а также другие вещества - оксид азот (NO), аденозин, простагландины и, возможно, градиенты ионной концентрации.

3. Внешние факторы

Парциальное давление CO 2 и O 2 в крови

Рис. 25-1. Ауторегуляция мозгового кровообращения


Парциальное давление CO 2 в артериальной крови (PaCO 2) - наиболее важный внешний фактор, вли­яющий на MK. MK прямо пропорционален PaCO 2 в пределах от 20 до ЗОммрт. ст. (рис. 25-2). Увели­чение PaCO 2 на 1 мм рт. ст. влечет за собой мгновен-

ное повышение MK на 1-2 мл/100 г/мин, умень­шение PaCO 2 приводит к эквивалентному сниже­нию MK. Этот эффект опосредуется через рН це­реброспинальной жидкости и вещества мозга. Поскольку CO 2 , в отличие от ионов, легко проника­ ет, через гематоэнцефалический барьер, то на MK влияет именно острое изменение PaCO 2 , а не кон­ центрации HCO 3 ". Через 24-48 ч после начала гипо- или гиперкапнии развивается компенсатор­ное изменение концентрации HCO 3 " в спинномоз­говой жидкости. При выраженной гипервентиля­ции (PaCO 2 < 20 мм рт. ст.) даже у здоровых людей на ЭЭГ появляется картина, аналогичная таковой при повреждении головного мозга. Острый мета­болический ацидоз не оказывает значительного влияния на MK, потому что ион водорода (H +) пло­хо проникает через гематоэнцефалический барьер. Что касается PaO 2 , то на MK оказывают воздей­ствие только его значительные изменения. В то вре­мя как гипероксия снижает MK не более чем на 10 %, при тяжелой гипоксии (PaO 2 < 50 мм рт. ст.) MK уве­личивается в гораздо большей степени (рис. 25-2).

Температура тела

Изменение MK составляет 5-7 % на 1 0 C. Гипотер­ мия снижает CMRO 2 и MK, в то время как гипер-термия оказывает обратный эффект. Уже при 20 0 C на ЭЭГ регистрируют изолинию, но дальней­шее уменьшение температуры позволяет еще силь­нее снизить потребление кислорода мозгом. При температуре выше 42 0 C потребление кислорода мозгом также снижается, что, по-видимому, обус­ловлено повреждением нейронов.

Вязкость крови


Рис. 25-2. Влияние PaO 2 и PaCO 2 Ha мозговой кровоток


У здоровых людей вязкость крови не оказывает значительного влияния на MK. Вязкость крови

в наибольшей степени зависит от гематокрита, по­этому снижение гематокрита уменьшает вязкость и увеличивает MK. К сожалению, помимо этого благоприятного эффекта, снижение гематокрита имеет и отрицательную сторону: оно уменьшает кислородную емкость крови и, соответственно, до­ставку кислорода. Высокий гематокрит, например при тяжелой полицитемии, увеличивает вязкость крови и снижает MK. Исследования показали, что для лучшей доставки кислорода к мозгу гемато­крит должен составлять 30-34 %.

Вегетативная нервная система

Внутричерепные сосуды иннервируются симпати­ческими (вазоконстрикторными), парасимпатичес­кими (вазодилатирующими) и нехолинергическими неадренергическими волокнами; нейротрансмитте-ры в последней группе волокон - серотонин и вазо-активный интестинальный пептид. Функция веге­тативных волокон сосудов мозга в физиологических условиях неизвестна, но продемонстрировано их участие при некоторых патологических состояниях. Так, импульсация по симпатическим волокнам pis верхних симпатических ганглиев может значитель­но сузить крупные мозговые сосуды и уменьшить MK. Вегетативная иннервация мозговых сосудов играет важную роль в возникновении церебрально­го вазоспазма после Ч MT и инсульта.

Гематоэнцефалический барьер

Между эндотелиальными клетками мозговых со­судов практически отсутствуют поры. Малочис­ленность пор - основная морфологическая осо­бенность гематоэнцефалического барьера. Липидный барьер проницаем для жирораствори­мых веществ, но значительно ограничивает про­никновение ионизированных частиц и крупных молекул. Таким образом, проницаемость гемато­ энцефалического барьера для молекулы какого-либо вещества зависит от ее размера, заряда, липо- фильности и степени связывания с белками крови. Углекислый газ, кислород и липофильные веще­ства (к которым относят большинство анестети­ков) легко проходят через гематоэнцефалический барьер, в то время как для большинства ионов, бел­ков и крупных молекул (например, маннитола) он практически непроницаем.

Вода свободно проникает через гематоэнцефа­лический барьер по механизму объемного тока, а пе­ремещение даже небольших ионов затруднено (вре­мя полу выравнивания для натрия составляет 2-4 ч). В результате быстрые изменения концентрации электролитов плазмы (а значит, и осмолярности)

вызывают преходящий осмотический градиент между плазмой и мозгом. Остро возникшая гипер-тоничность плазмы приводит к перемещению воды из вещества мозга в кровь. При острой гипотонич-ности плазмы, наоборот, происходит перемещение воды из крови в вещество мозга. Чаще всего равно­весие восстанавливается без особых последствий, но в ряде случаев существует опасность быстро раз­вивающихся массивных перемещений жидкости, чреватых повреждением мозга. Следовательно, зна­чительные нарушения концентрации натрия или глюкозы в плазме нужно устранять медленно (см. гл. 28). Маннитол, осмотически активное вещество, которое в физиологических условиях не пересекает гематоэнцефалический барьер, вызывает устойчи­вое уменьшение содержания воды в мозге и часто используется для уменьшения объема мозга.

Целостность гематоэнцефалического барьера нарушают тяжелая артериальная гипертензия, опухоли мозга, ЧМТ, инсульт, инфекции, выражен­ ная гиперкапния, гипоксия, устойчивая судорож­ная активность. При этих состояниях перемеще­ние жидкости через гематоэнцефалический барьер определяется не осмотическим градиентом, а гид­ростатическими силами.

Цереброспинальная жидкость

Цереброспинальная жидкость находится в желу­дочках и цистернах головного мозга, а также в суб-арахноидальном пространстве ЦНС. Главная функция цереброспинальной жидкости - защита мозга от травмы.

Большая часть цереброспинальной жидкости вырабатывается в сосудистых сплетениях желу­дочков мозга (преимущественно в боковых). Неко­торое количество образуется непосредственно в клетках эпендимы желудочков, а совсем неболь­шая часть - из жидкости, просачивающейся через периваскулярное пространство сосудов мозга (утечка через гематоэнцефалический барьер). У взрослых образуется 500 мл цереброспинальной жидкости в сутки (21 мл/ч), в то время как объем цереброспинальной жидкости составляет только 150 мл. Из боковых желудочков цереброспиналь­ная жидкость через межжелудочковые отверстия (отверстия Монро) проникает в третий желудочек, откуда через водопровод мозга (сильвиев водопро­вод) попадает в четвертый желудочек. Из четвер­того желудочка через срединную апертуру (отверс­тие Мажанди) и боковые апертуры (отверстия Люшка) цереброспинальная жидкость поступает в мозжечково-мозговую (большую) цистерну (рис. 25-3), а оттуда - в субарахноидальное про­странство головного и спинного мозга, где и цир-

кулирует до тех пор, пока не всасывается в грану­ляциях паутинной оболочки больших полушарий. Для образования цереброспинальной жидкости необходима активная секреция натрия в сосудистых сплетениях. Цереброспинальная жидкость изото-нична плазме, несмотря на более низкую концентра­цию калия, бикарбоната и глюкозы. Белок поступает в цереброспинальную жидкость только из перивас-кулярных пространств, поэтому его концентрация очень невелика. Ингибиторы карбоангидразы (аце-тазоламид), кортикостероиды, спиронолактон, фу-росемид, изофлюран и вазоконстрикторы уменьша­ют выработку цереброспинальной жидкости.

Рис. 25-3. Циркуляция цереброспинальной жидкости в центральной нервной системе. (С разрешения. Из: De-GrootJ., ChusidJ. G. Correlative Neuro anatomy , 21st ed. Appleton & Lange, 1991.)

Цереброспинальная жидкость всасывается в гра­нуляциях паутинной оболочки, откуда попадает в венозные синусы. Небольшое количество всасы­вается через лимфатические сосуды мозговых обо­лочек и периневральные муфты. Обнаружено, что всасывание прямо пропорционально ВЧД и обрат­но пропорционально церебральному венозному давлению; механизм этого явления неясен. По­скольку в головном и спинном мозге нет лимфати­ческих сосудов, всасывание цереброспинальной жидкости - основной путь возвращения белка из интерстициальных и периваскулярных про­странств мозга обратно в кровь.

Внутричерепное давление

Череп представляет собой жесткий футляр с нерас­тягивающимися стенками. Объем полости черепа не­изменен, его занимает вещество мозга (80 %), кровь (12 %) и цереброспинальная жидкость (8 %). Увели­ чение объема одного компонента влечет за собой рав­ ное по величине уменьшение остальных, так что ВЧД не повышается. ВЧД измеряют с помощью датчиков, установленных в боковом желудочке или на поверх­ности полушарий головного мозга; в норме его вели­чина не превышает 10 мм рт. ст. Давление церебро­спинальной жидкости, измеренное при люмбальной пункции в положении больного лежа на боку, доста­точно точно соответствует величине ВЧД, получен­ной с помощью внутричерепных датчиков.

Растяжимость внутричерепной системы опреде­ляют, измеряя прирост ВЧД при увеличении внут­ричерепного объема. Вначале увеличение внутриче­репного объема хорошо компенсируется (рис. 25-4), но после достижения определенной точки ВЧД рез­ко возрастает. Основные компенсаторные механиз­мы включают: (1) смещение цереброспинальной жидкости из полости черепа в субарахноидальное пространство спинного мозга; (2) увеличение вса­сывания цереброспинальной жидкости; (3) умень­шение образования цереброспинальной жидкости; (4) уменьшение внутричерепного объема крови (главным образом за счет венозной).

Податливость внутричерепной системы неоди­накова в разных участках мозга, на нее влияют АД и PaCO 2 . При повышении АД механизмы ауторе-гуляции вызывают вазоконстрикцию сосудов моз­га и снижение внутричерепного объема крови. Артериальная гипотония, наоборот, приводит к ва-зодилатации сосудов мозга и увеличению внутри­черепного объема крови. Таким образом, благо­даря ауторегуляции просвета сосудов MK не изменяется при колебаниях АД. При повышении PaCO 2 на 1 мм рт. ст. внутричерепной объем крови увеличивается на 0,04 мл/100 г.

Рис. 25-4. Растяжимость внутричерепной системы в норме

Концепцию растяжимости внутричерепной си­стемы широко используют в клинической практике. Растяжимость измеряют при введении стерильно­го физиологического раствора во внутрижелудоч-ковый катетер. Если после инъекций 1 мл раствора ВЧД увеличивается более чем на 4 мм рт. ст., то растяжимость считают значительно сниженной. Снижение растяжимости свидельствует об исто­щении механизмов компенсации и служит про­гностическим фактором уменьшения MK при дальнейшем прогрессировании внутричерепной гипертензии. Устойчивое повышение ВЧД может вызвать катастрофическую дислокацию и вклине­ние различных участков мозга. Выделяют следую­щие виды повреждений (рис. 25-5): (1) ущемление

Рис. 25-5. Дислокации головного мозга. (С разрешения. Из: Fishman R. A. Brain edema. New England J. Med., 1975; 293:706.)

поясной извилины серпом мозга; (2) ущемление крючка наметом мозжечка; (3) сдавленна продол­говатого мозга при вклинении миндалин мозжечка в большое затылочное отверстие; (4) выпячивание вещества мозга через дефект черепа.

Влияние анестетиков

и вспомогательных средств

наЦНС

Подавляющее большинство общих анестетиков благоприятно воздействует на ЦНС, снижая био­электрическую активность мозга. Катаболизм углеводов уменьшается, в то время как запасы энергии в виде АТФ, АДФ и фосфокреатина воз­растают. Оценить эффект отдельного препарата очень сложно, потому что на него накладывается действие других средств, хирургическая стиму­ляция, растяжимость внутричерепной системы, АД и PaCO 2 . Например, гипокапния и предвари­тельное введение тиопентала предотвращают уве­личение MK и ВЧД при использовании кетамина pi ингаляционных анестетиков. В этом разделе описано действие каждого препарата в отдельнос­ти. Итоговая табл. 25-1 позволяет оценить и срав­нить влияние анестетиков и вспомогательных средств на ЦНС. В разделе также обсуждается роль миорелаксантов и средств, оказывающих воз­действие на сосудистый тонус.

Ингаляционные анестетики

Следует еще раз подчеркнуть, что хроническое повышение артериального давления до цифр 140/90-179/104 мм рт.ст., как правило, не является непосредственной причиной головных болей (рецепторы, находящиеся в сосудистой стенке, реагируют прежде всего на растяжение, а не на спазм артерий). Во многих исследованиях не было выявлено какой-либо корреляционной связи между головной болью и цифрами артериального давления при проведении суточного мониторирования: как максимальными, так и минимальными цифрами, уровнем систолического и диастолического давления. Проведение активной гипотензивной терапии тем больным с повышенным артериальным давлением, которые жалуются на головную боль и связывают ее с повышением АД, в большинстве случаев не приводит к уменьшению выраженности головной боли, несмотря на нормализацию АД. Более того, наоборот, цефалгия как раз и возникает при снижении АД, особенно резком и значительном, что происходит за счет вазодилатации. Механизмы повреждения сосудов и ткани мозга при артериальной гипертензии обсуждаются на протяжении многих лет. Установлено, что мозговой кровоток обладает относительной автономностью и не зависит от колебаний системного артериального давления лишь при таких его величинах: минимальное - 50-60, максимальное - 160-180 мм рт.ст. При нарушении рамок этого диапазона мозговой кровоток начинает пассивно изменяться. При снижении артериального давления он уменьшается, при повышении - увеличивается. Критические уровни артериального давления, ниже или выше которых мозговой кровоток перестает быть постоянным, были обозначены как нижняя и верхняя границы ауторегуляции мозгового кровотока.

Не вызывает сомнений, что нормальная деятельность мозга возможна лишь в условиях адекватного кровоснабжения. Снижение мозгового кровотока приводит к ишемии мозга и нарушению его функций. Резкое увеличение мозгового кровотока при остром повышении артериального давления выше верхней границы ауторегуляции вызывает отек мозга, следствием чего является вторичное снижение мозгового кровотока с развитием ишемии.

У людей с длительной артериальной гипертензией развивается компенсаторная гипертрофия мышечной оболочки артерий, которая позволяет противостоять повышению артериального давления и увеличению мозгового кровотока. Это ведет к сдвигу верхней границы ауторегуляции вправо к более высоким цифрам артериального давления, что дает возможность мозгу сохранять кровоток стабильным. Из многочисленных клинических наблюдений известно, что гипертоники часто не предъявляют церебральных жалоб при рабочем давлении выше 200 мм рт.ст.

Но по мере развития гипертрофии гладких мышц сосудов и дегенеративных изменений в них ограничивается возможность сосудов к расширению, обеспечивающему постоянство мозгового кровотока при снижении артериального давления. Вследствие этого происходит сдвиг нижней границы ауторегуляции мозгового кровотока вправо. У больных с тяжелой гипертензией эта цифра достигает 150 мм рт.ст. Поэтому в случаях, когда артериальное давление у таких больных падает ниже обозначенной границы, автоматически возникает ишемия мозга за счет уменьшения мозгового кровотока.

1. Церебральное перфузионное давление

Церебральное перфузионное давление (ЦПД) -

это разница между средним артериальным давлением (АДср) и ВЧД (или церебральным венозным давлением). Если церебральное венозное давление значительно превышает ВЧД, то ЦПД равно разнице между АДср и церебральным венозным давлением. В физиологических условиях ВЧД незначительно отличается от церебрального венозного давления, поэтому принято считать, что ЦПД = = АДср - ВЧД. В норме церебральное перфузионное давление составляет 100 мм рт. ст. и зависит главным образом от АДср, потому что ВЧД у здорового человека не превышает 10 мм рт. ст.

При выраженной внутричерепной гипертензии (ВЧД > 30 мм рт. ст.) ЦПД и MK могут значительно снижаться даже при нормальном АДср. ЦПД < 50 мм рт. ст. проявляется замедлением ритма на ЭЭГ, ЦПД в пределах от 25 до 40 мм рт. ст. - изолинией на ЭЭГ, а при устойчивом снижении ЦПД менее 25 мм рт. ст. возникает необратимое повреждение мозга.

2. Ауторегуляция мозгового кровообращения

В головном мозге, так же как в сердце и почках, даже значительные колебания АД не оказывают существенного влияния на кровоток. Сосуды мозга быстро реагируют на изменение ЦПД. Снижение ЦПД вызывает вазодилатацию сосудов мозга, увеличение ЦПД - вазоконстрикцию. У здоровых людей MK остается неизменным при колебаниях АДср в пределах от 60 до 160 мм рт. ст. (рис. 25-1). Если АДср выходит за границы этих значений, то ауторегуляция MK нарушается. Увеличение АДср до 160 мм рт. ст. и выше вызывает повреждение ге-матоэнцефалического барьера (см. ниже), чреватое отеком мозга и геморрагическим инсультом. хронической артериальной гипертонии кривая ауторегуляции мозгового кровообращения

(рис. 25-1) смещается вправо, причем сдвиг затрагивает и нижнюю, и верхнюю границы. При артериальной гипертонии снижение АД до обычных значений (меньше измененной нижней границы) приводит к уменьшению MK, в то время как высокое АД не вызывает повреждения мозга. Длительная гипотензивная терапия может восстановить ауторегуляцию мозгового кровообращения в физиологических границах.

Существуют две теории ауторегуляции мозгового кровообращения - миогенная и метаболическая. Миогенная теория объясняет механизм ауторегуляции способностью гладкомышечных клеток церебральных артериол сокращаться и расслабляться в зависимости от АДср. Согласно метаболической теории, тонус церебральных артериол зависит от потребности мозга в энергетических субстратах. Когда потребность мозга в энергетических субстратах превышает их доставку, в кровь выделяются тканевые метаболиты, которые вызывают церебральную вазодилатацию и увеличение MK. Этот механизм опосредуют ионы водорода (их роль в церебральной вазодилатации описана раньше), а также другие вещества - оксид азот (NO), аденозин, простагландины и, возможно, градиенты ионной концентрации.

3. Внешние факторы

Парциальное давление CO2 и O2 в крови

Парциальное давление CO2 в артериальной крови (PaCO2) - наиболее важный внешний фактор, влияющий на MK. MK прямо пропорционален PaCO2 в пределах от 20 до ЗОммрт. ст. (рис. 25-2). Увеличение PaCO2 на 1 мм рт. ст. влечет за собой мгновен ное повышение MK на 1-2 мл/100 г/мин, уменьшение PaCO2 приводит к эквивалентному снижению MK. Этот эффект опосредуется через рН цереброспинальной жидкости и вещества мозга. Поскольку CO2, в отличие от ионов, легко проникает, через гематоэнцефалический барьер, то на MK влияет именно острое изменение PaCO2, а не концентрации HCO3". Через 24-48 ч после начала гипо- или гиперкапнии развивается компенсаторное изменение концентрации HCO3" в спинномозговой жидкости. При выраженной гипервентиляции (PaCO2 < 20 мм рт. ст.) даже у здоровых людей на ЭЭГ появляется картина, аналогичная таковой при повреждении головного мозга. Острый метаболический ацидоз не оказывает значительного влияния на MK, потому что ион водорода (H+) плохо проникает через гематоэнцефалический барьер. Что касается PaO2, то на MK оказывают воздействие только его значительные изменения. В то время как гипероксия снижает MK не более чем на 10 %, при тяжелой гипоксии (PaO2 < 50 мм рт. ст.) MK увеличивается в гораздо большей степени (рис. 25-2).