Регрессионный анализ. Основы анализа данных

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них - уравнение регрессии - рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х - независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая - зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии - это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х 1 , х 2 ...х с)+E. В данной ситуации у выступает зависимой переменной, а х - объясняющей. Переменная Е - стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная - это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е - стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный - о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 - тем сильнее связь между параметрами, чем ближе к 0 - тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого - вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель - свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х - нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y - тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x 1 ,x 2 ,…,x m)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а 0 + a 1 х 1 + а 2 х 2 ,+ ... + a m x m . При этом а2, a m , считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах 1 b1 х 2 b2 ...x m bm . В данном случае показатели b 1 , b 2 ..... b m - называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям - система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий - отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.

Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет зависимость между исследуемыми переменными.

Последовательность этапов регрессионного анализа

Рассмотрим кратко этапы регрессионного анализа.

    Формулировка задачи. На этом этапе формируются предварительные гипотезы о зависимости исследуемых явлений.

    Определение зависимых и независимых (объясняющих) переменных.

    Сбор статистических данных. Данные должны быть собраны для каждой из переменных, включенных в регрессионную модель.

    Формулировка гипотезы о форме связи (простая или множественная, линейная или нелинейная).

    Определение функции регрессии (заключается в расчете численных значений параметров уравнения регрессии)

    Оценка точности регрессионного анализа.

    Интерпретация полученных результатов. Полученные результаты регрессионного анализа сравниваются с предварительными гипотезами. Оценивается корректность и правдоподобие полученных результатов.

    Предсказание неизвестных значений зависимой переменной.

При помощи регрессионного анализа возможно решение задачи прогнозирования и классификации. Прогнозные значения вычисляются путем подстановки в уравнение регрессии параметров значений объясняющих переменных. Решение задачи классификации осуществляется таким образом: линия регрессии делит все множество объектов на два класса, и та часть множества, где значение функции больше нуля, принадлежит к одному классу, а та, где оно меньше нуля, - к другому классу.

Задачи регрессионного анализа

Рассмотрим основные задачи регрессионного анализа: установление формы зависимости, определение функции регрессии , оценка неизвестных значений зависимой переменной.

Установление формы зависимости.

Характер и форма зависимости между переменными могут образовывать следующие разновидности регрессии:

    положительная линейная регрессия (выражается в равномерном росте функции);

    положительная равноускоренно возрастающая регрессия;

    положительная равнозамедленно возрастающая регрессия;

    отрицательная линейная регрессия (выражается в равномерном падении функции);

    отрицательная равноускоренно убывающая регрессия;

    отрицательная равнозамедленно убывающая регрессия.

Однако описанные разновидности обычно встречаются не в чистом виде, а в сочетании друг с другом. В таком случае говорят о комбинированных формах регрессии.

Определение функции регрессии.

Вторая задача сводится к выяснению действия на зависимую переменную главных факторов или причин, при неизменных прочих равных условиях, и при условии исключения воздействия на зависимую переменную случайных элементов. Функция регрессии определяется в виде математического уравнения того или иного типа.

Оценка неизвестных значений зависимой переменной.

Решение этой задачи сводится к решению задачи одного из типов:

    Оценка значений зависимой переменной внутри рассматриваемого интервала исходных данных, т.е. пропущенных значений; при этом решается задача интерполяции.

    Оценка будущих значений зависимой переменной, т.е. нахождение значений вне заданного интервала исходных данных; при этом решается задача экстраполяции.

Обе задачи решаются путем подстановки в уравнение регрессии найденных оценок параметров значений независимых переменных. Результат решения уравнения представляет собой оценку значения целевой (зависимой) переменной.

Рассмотрим некоторые предположения, на которые опирается регрессионный анализ.

Предположение линейности, т.е. предполагается, что связь между рассматриваемыми переменными является линейной. Так, в рассматриваемом примере мы построили диаграмму рассеивания и смогли увидеть явную линейную связь. Если же на диаграмме рассеивания переменных мы видим явное отсутствие линейной связи, т.е. присутствует нелинейная связь, следует использовать нелинейные методы анализа.

Предположение о нормальности остатков . Оно допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения можно воспользоваться гистограммамиостатков .

При использовании регрессионного анализа следует учитывать его основное ограничение. Оно состоит в том, что регрессионный анализ позволяет обнаружить лишь зависимости, а не связи, лежащие в основе этих зависимостей.

Регрессионный анализ дает возможность оценить степень связи между переменными путем вычисления предполагаемого значения переменной на основании нескольких известных значений.

Уравнение регрессии.

Уравнение регрессии выглядит следующим образом: Y=a+b*X

При помощи этого уравнения переменная Y выражается через константу a и угол наклона прямой (или угловой коэффициент) b, умноженный на значение переменной X. Константу a также называют свободным членом, а угловой коэффициент - коэффициентом регрессии или B-коэффициентом.

В большинстве случав (если не всегда) наблюдается определенный разброс наблюдений относительно регрессионной прямой.

Остаток - это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис "Пакет анализа" и инструмент анализа "Регрессия". Задаем входные интервалы X и Y. Входной интервал Y - это диапазон зависимых анализируемых данных, он должен включать один столбец. Входной интервал X - это диапазон независимых данных, которые необходимо проанализировать. Число входных диапазонов должно быть не больше 16.

На выходе процедуры в выходном диапазоне получаем отчет, приведенный в таблице 8.3а -8.3в .

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значениеR-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно,множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии

Коэффициенты

Стандартная ошибка

t-статистика

Y-пересечение

Переменная X 1

* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты выводаостатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки

Наблюдение

Предсказанное Y

Остатки

Стандартные остатки

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае - 0,778, наименьшее - 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными нарис. 8.3 . Как видим, линия регрессии достаточно точно "подогнана" под значения исходных данных.

Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.

Рис. 8.3. Исходные данные и линия регрессии

Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.

Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4 .

Таблица 8.4. Результаты прогнозирования переменной Y

Y(прогнозируемое)

Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:

    построили уравнение регрессии;

    установили форму зависимости и направление связи между переменными - положительная линейная регрессия, которая выражается в равномерном росте функции;

    установили направление связи между переменными;

    оценили качество полученной регрессионной прямой;

    смогли увидеть отклонения расчетных данных от данных исходного набора;

    предсказали будущие значения зависимой переменной.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

В этой работе мы рассмотрели основные характеристики описательной статистики и среди них такие понятия, каксреднее значение ,медиана ,максимум ,минимум и другие характеристики вариации данных.

Также было кратко рассмотрено понятие выбросов . Рассмотренные характеристики относятся к так называемому исследовательскому анализу данных, его выводы могут относиться не к генеральной совокупности, а лишь к выборке данных. Исследовательский анализ данных используется для получения первичных выводов и формирования гипотез относительно генеральной совокупности.

Также были рассмотрены основы корреляционного и регрессионного анализа, их задачи и возможности практического использования.

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Регрессионный анализ исследует зависимость определенной величины от другой величины или нескольких других величин. Регрессионный анализ применяется преимущественно в среднесрочном прогнозировании, а также в долгосрочном прогнозировании. Средне- и долгосрочный периоды дают возможность установления изменений в среде бизнеса и учета влияний этих изменений на исследуемый показатель.

Для осуществления регрессионного анализа необходимо:

    наличие ежегодных данных по исследуемым показателям,

    наличие одноразовых прогнозов, т.е. таких прогнозов, которые не поправляются с поступлением новых данных.

Регрессионный анализ обычно проводится для объектов, имеющих сложную, многофакторную природу, таких как, объем инвестиций, прибыль, объемы продаж и др.

При нормативном методе прогнозирования определя­ются пути и сроки достижения возможных состояний явле­ния, принимаемых в качестве цели. Речь идет о прогнози­ровании достижения желательных состояний явления на основе заранее заданных норм, идеалов, стимулов и целей. Такой прогноз отвечает на вопрос: какими путями можно достичь желаемого? Нормативный метод чаще применяется для программ­ных или целевых прогнозов. Используются как количествен­ное выражение норматива, так и определенная шкала воз­можностей оценочной функции

В случае использования количественного выражения, например физиологических и рациональных норм потреб­ления отдельных продовольственных и непродовольствен­ных товаров, разработанных специалистами для различных групп населения, можно определить уровень потребления этих товаров на годы, предшествующие достижению ука­занной нормы. Такие расчеты называют интерполяцией. Интерполяция - это способ вычисления показателей, недо­стающих в динамическом ряду явления, на основе установ­ленной взаимосвязи. Принимая фактическое значение по­казателя и значение его нормативов за крайние члены ди­намического ряда, можно определить величины значений внутри этого ряда. Поэтому интерполяцию считают норма­тивным методом. Ранее приведенная формула (4), исполь­зуемая в экстраполяции, может применяться в интерполя­ции, где у п будет характеризовать уже не фактические данные, а норматив показателя.

В случае использования в нормативном методе шкалы (поля, спектра) возможностей оценочной функции, т. е. фун­кции распределения предпочтительности, указывают при­мерно следующую градацию: нежелательно - менее же­лательно - более желательно - наиболее желательно - оптимально (норматив).

Нормативный метод прогнозирования помогает выра­ботать рекомендации по повышению уровня объективнос­ти, следовательно, эффективности решений.

Моделирование , пожалуй, самый сложный метод про­гнозирования. Математическое моделирование означает опи­сание экономического явления посредством математичес­ких формул, уравнений и неравенств. Математической ап­парат должен достаточно точно отражать прогнозный фон, хотя полностью отразить всю глубину и сложность прогно­зируемого объекта довольно трудно. Термин "модель" об­разован от латинского слова modelus, что означает "мера". Поэтому моделирование правильнее было бы считать не методом прогнозирования, а методом изучения аналогично­го явления на модели.

В широком смысле моделями называются заместители объекта исследования, находящиеся с ним в таком сход­стве, которое позволяет получить новое знание об объек­те. Модель следует рассматривать как математическое опи­сание объекта. В этом случае модель определяется как яв­ление (предмет, установка), которое находиться в некотором соответствии с изучаемым объектом и может его замещать в процессе исследования, представляя информацию об объекте.

При более узком понимании модели она рассматрива­ется как объект прогнозирования, ее исследование позво­ляет получить информацию о возможных состояниях объек­та в будущем и путях достижения этих состояний. В этом случае целью прогнозной модели является получение ин­формации не об объекте вообще, а только о его будущих состояниях. Тогда при построении модели бывает невозмож­но провести прямую проверку ее соответствия объекту, так как модель представляет собой только его будущее состояние, а сам объект в настоящее время может отсут­ствовать или иметь иное существование.

Модели могут быть материальными и идеальными.

В экономике используются идеальные модели. Наиболее совершенной идеальной моделью количественного описания социально-экономического (экономического) явления является математическая модель, использующая числа, формулы, уравнения, алгоритмы или графическое представление. С помощью экономических моделей определяют:

    зависимость между различными экономическими по­казателями;

    различного рода ограничения, накладываемые на по­казатели;

    критерии, позволяющие оптимизировать процесс.

Содержательное описание объекта может быть пред­ставлено в виде его формализованной схемы, которая ука­зывает, какие параметры и исходную информацию нужно собрать, чтобы вычислить искомые величины. Математичес­кая модель в отличие от формализованной схемы содержит конкретные числовые данные, характеризующие объект Разработка математической модели во многом зависит от представления прогнозиста о сущности моделируемого про­цесса. На основе своих представлений он выдвигает рабочую гипотезу, с помощью которой создается аналитическая за­пись модели в виде формул, уравнений и неравенств. В ре­зультате решения системы уравнений получают конкретные параметры функции, которыми описывается изменение ис­комых переменных величин во времени.

Порядок и последовательность работы как элемент организации прогнозирования определяется в зависимости от применяемого метода прогнозирования. Обычно эта ра­бота выполняется в несколько этапов.

1-й этап - прогнозная ретроспекция, т. е. установле­ние объекта прогнозирования и прогнозного фона. Работа на первом этапе выполняется в такой последовательности:

    формирование описания объекта в прошлом, что включает предпрогнозный анализ объекта, оценку его параметров, их значимости и взаимных связей,

    определение и оценка источников информации, по­рядка и организации работы с ними, сбор и разме­щение ретроспективной информации;

    постановка задач исследования.

Выполняя задачи прогнозной ретроспекции, прогнозис­ты исследуют историю развития объекта и прогнозного фона с целью получения их систематизированного описания.

2-й этап - прогнозный диагноз, в ходе которого ис­следуется систематизированное описание объекта прогно­зирования и прогнозного фона с целью выявления тенден­ций их развития и выбора моделей и методов прогнозиро­вания. Работа выполняется в такой последовательности:

    разработка модели объекта прогноза, в том числе формализованное описание объекта, проверка сте­пени адекватности модели объекту;

    выбор методов прогнозирования (основного и вспо­могательных), разработка алгоритма и рабочих про­грамм.

3-й этап - протекция, т. е. процесс обширной разра­ботки прогноза, в том числе: 1) расчет прогнозируемых па­раметров на заданный период упреждения; 2) синтез от­дельных составляющих прогноза.

4-й этап - оценка прогноза, в том числе его верифи­кация, т. е. определение степени достоверности, точности и обоснованности.

В ходе проспекции и оценки на основании предыдущих этапов решаются задачи прогноза и его оценка.

Указанная этапность является примерной и зависит от основного метода прогнозирования.

Результаты прогноза оформляются в виде справки, док­лада или иного материала и представляются заказчику.

В прогнозировании может быть указана величина отклонения прогноза от действительного состояния объекта, которая называется ошибкой прогноза, которая рассчитывается по формуле:

;
;
. (9.3)

Источники ошибок в прогнозировании

Основными источниками могут быть:

1. Простое перенесение (экстраполяция) данных из прошлого в будущее (например, отсутствие у фирмы иных вариантов прогноза, кроме 10% роста продаж).

2. Невозможность точно определить вероятность события и его воздействия на исследуемый объект.

3. Непредвиденные трудности (разрушительные события), влияющие на осуществление плана, например, внезапное увольнение начальника отдела сбыта.

В целом точность прогнозирования повышается по мере накопления опыта прогнозирования и отработки его методов.

Лекция 3.

Регрессионный анализ.

1) Числовые характеристики регрессии

2) Линейная регрессия

3) Нелинейная регрессия

4) Множественная регрессия

5) Использование MS EXCEL для выполнения регрессионного анализа

Контрольно-оценочное средство - тестовые задания

1. Числовые характеристики регрессии

Регрессионный анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения.

Цели регрессионного анализа

  • Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными).
  • Предсказание значения зависимой переменной с помощью независимой(-ых).
  • Определение вклада отдельных независимых переменных в вариацию зависимой.

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Для проведения регрессионного анализа первоначально необходимо познакомиться с базовыми понятиями статистики и теории вероятности.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение.

Случайные величине делят на две разновидности:

  • · дискретные, которые могут принимать только конкретные, заранее оговоренные значения (например, - значения чисел на верхней грани брошенной игральной кости или порядковые значения текущего месяца);
  • · непрерывные (чаще всего - значения некоторых физических величин: веса, расстояния, температуры и т.п.), которые по законам природы могут принимать любые значения, хотя бы и в некотором интервале.

Закон распределения случайной величины - это соответствие между возможными значениями дискретной случайной величины и ее вероятностями, обычно записывается в таблицу:

Статистическое определение вероятности выражается через относительную частоту случайного события, то есть находится как отношение количества случайных величин к общему числу случайных величин.

Математическим ожиданием дискретной случайной величины X называется сумма произведений значений величины X на вероятности этих значений. Математическое ожидание обозначают или M (X ) .

n

= M (X ) = x 1 p 1 + x 2 p 2 +… + x n p n = S x i p i

i =1

Рассеяние случайной величины относительно её математического ожидания определяется с помощью числовой характеристики, называемой дисперсией. Проще говоря, дисперсия - это разброс случайной величины относительно среднего значения. Для понятия сущности дисперсии рассмотрим пример. Средняя заработная плата по стране составляет около 25 тысяч рублей. Откуда берется эта цифра? Скорее всего, складываются все зарплаты и делятся на количество работников. В данном случае очень большая дисперсия (минимальная зарплата около 4 тыс. руб., а максимальная - около 100 тыс. руб.). Если бы зарплата у всех была одинаковой, то дисперсия была бы равна нулю, и разброса бы не было.

Дисперсией дискретной случайной величины X называют математическое ожидание квадрата разности случайной величины и её математического ожидания:

D = M [ ((X - M (X)) 2 ]

Используя определение математического ожидания для вычисления дисперсии, получаем формулу:

D = S (x i - M (X)) 2 · p i

Дисперсия имеет размерность квадрата случайной величины. В тех случаях, когда нужно иметь числовую характеристику рассеяния возможных значений в той же размерности, что и сама случайная величина, используют среднее квадратичное отклонение.

Средним квадратичным отклонением случайной величины называют корень квадратный из её дисперсии.

Среднее квадратичное отклонение есть мера рассеяния значений случайной величины около ее математического ожидания.

Пример.

Закон распределения случайной величины Х задан следующей таблицей:

Найти её математическое ожидание, дисперсию и среднее квадратичное отклонение.

Используем приведенные выше формулы:

М (Х) = 1 · 0,1 + 2 · 0,4 + 4 · 0,4 + 5 · 0,1 = 3

D = (1-3) 2 · 0,1 + (2 - 3) 2 · 0,4 + (4 - 3) 2 · 0,4 + (5 - 3) 2 · 0,1 = 1,6

Пример.

В денежной лотерее разыгрывается 1 выигрыш в 1000 рублей, 10 выигрышей по 100 рублей и 100 выигрышей по 1 рублю при общем числе билетов 10000. Составьте закон распределения случайного выигрыша Х для владельца одного лотерейного билета и определите математическое ожидание, дисперсию и среднее квадратичное отклонение случайной величины.

X 1 = 1000, Х 2 = 100, Х 3 = 1, Х 4 = 0,

Р 1 = 1/10000 = 0,0001, Р 2 = 10/10000 = 0,001, Р 3 = 100/10000 = 0,01, Р 4 = 1 - (Р 1 + Р 2 + Р 3) = 0,9889.

Результаты поместим в таблицу:

Математическое ожидание - сумма парных произведений значения случайной величины на их вероятность. Для данной задачи его целесообразно вычислить по формуле

1000 · 0,0001 + 100 · 0,001 + 1 · 0,01 + 0 · 0,9889 = 0,21 рубля.

Получили настоящую «справедливую» цену билета.

D = S (x i - M (X)) 2 · p i = (1000 - 0,21) 2 0,0001 + (100 - 0,21) 2 0,001 +

+ (1 - 0,21) 2 0,01 + (0 - 0,21) 2 0,9889 ≈ 109,97

Функция распределения непрерывных случайных величин

Величину, которая в результате испытания примет одно возможное значение (при этом заранее неизвестно какое), называется случайной величиной. Как говорилось выше, случайные величины бывают дискретные (прерывные) и непрерывные.

Дискретной называют случайную величину, принимающую отдельные друг от друга возможные значения с определенными вероятностями, которые можно пронумеровать.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного интервала.

До этого момента мы ограничивались только одной “разновидностью” случайных величин - дискретных, т.е. принимающих конечные значения.

Но теория и практика статистики требуют использовать понятие непрерывной случайной величины - допускающей любые числовые значения, из какого - либо интервала.

Закон распределения непрерывной случайной величины удобно задавать с помощью так называемой функции плотности вероятности. f (х). Вероятность Р (a < X < b) того, что значение, принятое случайной величиной Х, попадет в промежуток (a; b), определяется равенством

Р (a < X < b) = ∫ f (x ) dx

График функции f (х) называется кривой распределения. Геометрически вероятность попадания случайной величины в промежуток (a; b), равна площади соответствующей криволинейной трапеции, ограниченной кривой распределения, осью Ох и прямыми х = а, х = b.

P(a£X

Если от сложного события вычесть конечное либо счетное множество, вероятность наступления нового события останется неизменной.

Функция f(x) - числовая скалярная функция действительного аргумента x называется плотностью вероятности, и существует в точке x, если в этой точке существует предел:

Свойства плотности вероятности:

  1. Плотность вероятности является неотрицательной функцией, т. е. f(x) ≥ 0

(если все значения случайной величины Х заключены в промежутке (a;b), то последнее

равенство можно записать в виде ∫ f (x) dx = 1).

Рассмотрим теперь функцию F(х) = Р (Х < х). Эта функция называется функцией распределения вероятности случайной величины Х. Функция F(х) существует как для дискретных, так и для непрерывных случайных величин. Если f (x) - функция плотности распределения вероятности

непрерывной случайной величины Х, то F (х) = ∫ f(x) dx = 1).

Из последнего равенства следует, что f (x) = F" (x)

Иногда функцию f(x) называют дифференциальной функцией распределения вероятности, а функцию F(x) - интегральной функцией распределения вероятности.

Отметим важнейшие свойства функции распределения вероятности:

  1. F (х) - неубывающая функция.
  2. F (- ∞) = 0.
  3. F (+ ∞) = 1.

Понятие функции распределения является центральным в теории вероятностей. Используя это понятие, можно дать другое определение непрерывной случайной величины. Случайная величина называется непрерывной, если ее интегральная функция распределения F(х) непрерывна.

Числовые характеристики непрерывных случайных величин

Математическое ожидание, дисперсия и другие параметры любых случайных величин практически всегда вычисляются по формулам, вытекающим из закона распределения.

Для непрерывной случайной величины математическое ожидание вычисляется по формуле:

М (Х) = ∫ x · f(x ) dx

Дисперсия:

D (X) = ∫ (x - М (Х)) 2 f (x ) dx или D (X) = ∫ x 2 f(x ) dx - (М (Х)) 2

2. Линейная регрессия

Пусть составляющие Х и Y двумерной случайной величины (Х, Y) зависимы. Будем считать, что одну из них можно приближенно представить как линейную функцию другой, например

Y ≈ g(Х) = α + βХ, и определим параметры α и β с помощью метода наименьших квадратов.

Определение. Функция g(Х) = α + βХ называется наилучшим приближением Y в смысле метода наименьших квадратов, если математическое ожидание М(Y - g(Х)) 2 принимает наименьшее возможное значение; функцию g(Х) называют среднеквадратической регрессией Y на Х.

Теорема Линейная средняя квадратическая регрессия Y на Х имеет вид:

где - коэффициент корреляции Х иY.

Коэффициенты уравнения.

Можно проверить, что при этих значениях функция функция F(α, β)

F (α, β ) = M (Y - α - βX )² имеет минимум, что доказывает утверждение теоремы.

Определение. Коэффициент называется коэффициентом регрессии Y на Х , а прямая - - прямой среднеквадратической регрессии Y на Х .

Подставив координаты стационарной точки в равенство, можно найти минимальное значение функции F(α, β), равное Эта величина называется остаточной дисперсией Y относительно Х и характеризует величину ошибки, допускаемой при замене Y на

g(Х) = α+βХ. При остаточная дисперсия равна 0, то есть равенство является не приближенным, а точным. Следовательно, при Y и Х связаны линейной функциональной зависимостью. Аналогично можно получить прямую среднеквадратической регрессии Х на Y:

и остаточную дисперсию Х относительно Y. При обе прямые регрессии совпадают. Сопоставив уравнения регрессии У на Х и Х на У и решив систему из уравнений, можно найти точку пересечения прямых регрессии - точку с координатами (т х, т у), называемую центром совместного распределения величин Х и Y.

Алгоритм составления уравнений регрессии рассмотрим из учебника В. Е. Гмурмана «Теория вероятности и математическая статистика» стр. 256.

1) Составить расчетную таблицу, в которой будут записаны номера элементов выборки, варианты выборки, их квадраты и произведение.

2) Вычислить сумму по всем столбцам, кроме номера.

3) Вычислить средние значения для каждой величины, дисперсии и средне квадратические отклонения.

5) Проверить гипотезу о существовании связи между Х и У.

6) Составить уравнения обеих линий регрессии и изобразить графики этих уравнений.

Угловой коэффициент прямой линии регрессии У на Х - это выборочный коэффициент регрессии

Коэффициент b=

Получим искомое уравнение линии регрессии У на Х:

У = 0,202 Х + 1,024

Аналогично уравнение регрессии Х на У:

Угловой коэффициент прямой линии регрессии У на Х - это выборочный коэффициент регрессии pxy:

Коэффициент b=

Х = 4,119У - 3,714

3. Нелинейная регрессия

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например:

Полиномы разных степеней

Равносторонняя гипербола - ;

Полулогарифмическая функция - .

2. Регрессии, нелинейные по оцениваемым параметрам, например:

Степенная - ;

Показательная - ;

Экспоненциальная - .

Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые функции.

Парабола второй степени приводится к линейному виду с помощью замены: . В результате приходим к двухфакторному уравнению, оценка параметров которого при помощи Метода наименьших квадратов приводит к системе уравнений:

Парабола второй степени обычно применяется в случаях, когда для определенного интервала значений фактора меняется характер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую.

Равносторонняя гипербола может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объема выпускаемой продукции, времени обращения товаров от величины товарооборота. Классическим ее примером является кривая Филлипса, характеризующая нелинейное соотношение между нормой безработицы x и процентом прироста заработной платы y .

Гипербола приводится к линейному уравнению простой заменой: . Также можно использовать Метод наименьших квадратов для составления системы линейных уравнений.

Аналогичным образом приводятся к линейному виду зависимости: , и другие.

Равносторонняя гипербола и полулогарифмическая кривая используют для описания кривой Энгеля (математическое описание взаимосвязи доли расходов на товары длительного пользования и общих сумм расходов (или доходов)). Уравнения, в которых входят, применяются в исследованиях урожайности, трудоемкости сельскохозяйственного производства.

4. Множественная регрессия

Множественная регрессия - уравнение связи с несколькими независимыми переменными:

где - зависимая переменная (результативный признак);

Независимые переменные (факторы).

Для построения уравнения множественной регрессии чаще используются следующие функции:

линейная -

степенная -

экспонента -

гипербола - .

Можно использовать и другие функции, приводимые к линейному виду.

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:

Для ее решения может быть применен метод определителей:

где - определитель системы;

Частные определители; которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Другой вид уравнения множественной регрессии - уравнение регрессии в стандартизированном масштабе, к уравнению множественной регрессии в стандартизированном масштабе применим МНК.

5. Использование MS EXCEL для выполнения регрессионного анализа

Регрессионный анализ устанавливает формы зависимости между случайной величиной Y (зависимой) и значениями одной или нескольких переменных величин (независимых), причем значения последних считаются точно заданными. Такая зависимость обычно определяется некоторой математической моделью (уравнением регрессии), содержащей несколько неизвестных параметров. В ходе регрессионного анализа на основании выборочных данных находят оценки этих параметров, определяются статистические ошибки оценок или границы доверительных интервалов и проверяется соответствие (адекватность) принятой математической модели экспериментальным данным.

В линейном регрессионном анализе связь между случайными величинами предполагается линейной. В самом простом случае в парной линейной регрессионной модели имеются две переменные Х и Y. И требуется по n парам наблюдений (X1, Y1), (X2, Y2), ..., (Xn, Yn) построить (подобрать) прямую линию, называемую линией регрессии, которая «наилучшим образом» приближает наблюдаемые значения. Уравнение этой линии y=аx+b является регрессионным уравнением. С помощью регрессионного уравнения можно предсказать ожидаемое значение зависимой величины y, соответствующее заданному значению независимой переменной x. В случае, когда рассматривается зависимость между одной зависимой переменной Y и несколькими независимыми X1, X2, ..., Xm, говорят о множественной линейной регрессии.

В этом случае регрессионное уравнение имеет вид

y = a 0 +a 1 x 1 +a 2 x 2 +…+a m x m ,

где a0, a1, a2, …, am - требующие определения коэффициенты регрессии.

Коэффициенты уравнения регрессии определяются при помощи метода наименьших квадратов, добиваясь минимально возможной суммы квадратов расхождений реальных значений переменной Y и вычисленных по регрессионному уравнению. Таким образом, например, уравнение линейной регрессии может быть построено даже в том случае, когда линейная корреляционная связь отсутствует.

Мерой эффективности регрессионной модели является коэффициент детерминации R2 (R-квадрат). Коэффициент детерминации может принимать значения между 0 и 1 определяет, с какой степенью точности полученное регрессионное уравнение описывает (аппроксимирует) исходные данные. Исследуется также значимость регрессионной модели с помощью F-критерия (Фишера) и достоверность отличия коэффициентов a0, a1, a2, …, am от нуля проверяется с помощью критерия Стьюдента.

В Excel экспериментальные данные аппроксимируются линейным уравнением до 16 порядка:

y = a0+a1x1+a2x2+…+a16x16

Для получения коэффициентов линейной регрессии может быть использована процедура «Регрессия» из пакета анализа. Также полную информацию об уравнении линейной регрессии дает функция ЛИНЕЙН. Кроме того, могут быть использованы функции НАКЛОН и ОТРЕЗОК для получения параметров регрессионного уравнения и функция ТЕНДЕНЦИЯ и ПРЕДСКАЗ для получения предсказанных значений Y в требуемых точках (для парной регрессии).

Рассмотрим подробно применение функции ЛИНЕЙН (известные_y, [известные_x], [константа], [статистика]): известные_у - диапазон известных значений зависимого параметра Y. В парном регрессионном анализе может иметь любую форму; в множественном должен быть строкой либо столбцом; известные_х - диапазон известных значений одного или нескольких независимых параметров. Должен иметь ту же форму, что и диапазон Y (для нескольких параметров - соответственно несколько столбцов или строк); константа - логический аргумент. Если исходя из практического смысла задачи регрессионного анализа необходимо, чтобы линия регрессии проходила через начало координат, то есть свободный коэффициент был равен 0, значение этого аргумента следует положить равным 0 (или «ложь»). Если значение положено 1 (или «истина») или опущено, то свободный коэффициент вычисляется обычным образом; статистика - логический аргумент. Если значение положено 1 (или «истина»), то дополнительно возвращается регрессионная статистика (см таблицу), используемая для оценки эффективности и значимости модели. В общем случае для парной регрессии y=аx+b результат применения функции ЛИНЕЙН имеет вид:

Таблица. Выводной диапазон функции ЛИНЕЙН для парного регрессионного анализа

В случае множественного регрессионного анализа для уравнения y=a0+a1x1+a2x2+…+amxm в первой строке выводятся коэффициенты am,…,a1,а0, во второй - стандартные ошибки для этих коэффициентов. В 3-5 строках за исключением первых двух столбцов, заполненных регрессионной статистикой, будет получено значение #Н/Д.

Вводить функцию ЛИНЕЙН следует как формулу массива, выделив вначале массив нужного размера для результата (m+1 столбец и 5 строк, если требуется регрессионная статистика) и завершив ввод формулы нажатием CTRL+SHIFT+ENTER.

Результат для нашего примера:

Кроме этого в программе имеется встроенная функция - Анализ данных на вкладке Данные.

С помощью нее можно также выполнять регрессионный анализ:

На слайде - результат регрессионного анализа, выполненного с помощью Анализа данных.

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

Переменная X 1

Уравнения регрессии, которые мы смотрели ранее также построены в MS Excel. Для их выполнения сначала строится Точечная диаграмма, затем через контекстное меню выбираем - Добавить линию тренда. В новом окне ставим галочки - Показывать уравнение на диаграмме и поместить на диаграмму величину достоверности апроксимации (R^2).

Литература:

  1. Теория вероятностей и математическая статистика. Гмурман В. Е. Учебное пособие для вузов. - Изд. 10-е, стер. - М.: Высш. шк., 2010. - 479с.
  2. Высшая математика в упражнениях и задачах. Учебное пособие для вузов / Данко П. Е., Попов А. Г., Кожевникова Т. Я., Данко С. П. В 2 ч. - Изд. 6-е, стер. - М.: ООО «Издательство Оникс»: ООО «Издательство «Мир и образование» , 2007. - 416 с.
    1. 3. http://www.machinelearning.ru/wiki/index.php?title=%D0%A0%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F - некоторые сведения о регрессионном анализе