Т лимфоциты происходят из. Развитие т- и в-лимфоцитов

Какова норма лимфоцитов в крови? Есть ли разница в их количестве у мужчин и женщин, детей и взрослых? Сейчас все расскажем. Уровень лимфоцитов в крови определяется в ходе общеклинических анализов с целью первичной диагностики наличия инфекционных заболеваний, аллергических реакций, а также при необходимости оценки побочных эффектов от лекарств и эффективности выбранного лечения.

Определение величины активированных лимфоцитов не является рутинным лабораторным исследованием и проводится исключительно при наличии показаний.

Данный анализ не выполняется отдельно от общего иммунологического обследования пациента или определения других лейкоцитарных клеток (эозинофилов, моноцитов, лимфоцитов в крови и т.д.) поскольку изолировано не имеет диагностической ценности.

Лимфоциты lymph – это белые кровяные клетки (разновидность лейкоцитов), посредствам которых реализуется защитная функция организма человека от чужеродных инфекционных агентов и собственных мутантных клеток.

Лимфоциты абс – это абсолютное число данного вида клеток, определяемое по формуле:

Общее количество лейкоцитов * Содержание лимфоцитов (%)/100

Активированные лимфоциты подразделяются на 3 субпопуляции:

  • Т-лимфоциты – созревают в тимусе, ответственны за реализацию клеточного типа иммунного ответа (непосредственное взаимодействие иммунных клеток с патогенами). Они подразделяются на Т-хелперы (принимают участие в антигенпрезентации клеток, степени выраженности иммунной реакции и в синтезе цитокинов) и цитотоксические Т-лимфоциты (распознают чужеродные антигены и уничтожают их за счёт выброса токсинов или внедрения перфоринов, которые повреждают целостность цитоплазматической мембраны);
  • В-лимфоциты — обеспечивают гуморальный иммунитет посредством выработки специфических белковых молекул – антител;
  • NK-лимфоциты (натуральные киллеры) – растворяют клетки, зараженные вирусами или подвергшиеся злокачественному перерождению.

Известно, что лимфоциты в крови способны синтезировать на своей поверхности ряд антигенов, при этом, каждый из них уникален для своей субпопуляции и этапа формирования клетки. Функциональная активность подобных клеток различна. В большинстве случаев они являются мишенью для других лейкоцитов на этапе иммунофенотипирования.

Кластер дифференциации и его типы

Кластер дифференциации (cluster designation) – искусственно созданная номенклатура с присвоением номера различных антигенов, которые вырабатываются на поверхности лимфоцитов в крови. Синонимы термина: CD, CD-антиген или CD-маркер.

Во время лабораторной диагностики наличие меченых клеток в общей субпопуляции белых кровяных телец определяется при помощи моноклональных (одинаковых) антител с метками (на основе флюорохрома). При взаимодействии антител со строго специфичными CD-антигенами образуется устойчивый комплекс «антиген-антитело», при этом можно произвести подсчёт оставшихся свободными антител с меткой и определить количество лимфоцитов в крови.

Выделяют 6 типов кластеров CD-антигенов:

  • 3 – характерен для Т-лимфоцитов, принимает участие в образовании комплекса передачи сигнала по мембране;
  • 4 – идентифицируется на нескольких типах лейкоцитов, способствует облегчению процесса распознавания чужеродных антигенов при взаимодействии с MHC (главный комплекс гистосовестимости) 2 класса;
  • 8 – представлен на поверхности цитотоксичных Т-, NK-клеток, функционал аналогичен предыдущему типу кластеров, только распознаются антигены связанные с MHC 1 класса;
  • 16 – присутствует на различных видах белых кровяных телец, входит в состав рецепторов, отвечающих за активацию фагоцитоза и цитотоксичного ответа;
  • 19 – компонент В-лимфоцитов, необходим для их правильной дифференциации и активации;
  • 56 – вырабатывается на поверхности NK- и некоторых Т-клеток, необходим для обеспечения их прикрепления к тканям, поражённых злокачественными опухолями.

Показания к исследованию

Активированные лимфоциты в крови у ребёнка и взрослых определяются при:

  • диагностике аутоиммунных заболеваний, онкопатологий, аллергических реакций и степени их выраженности;
  • диагностике и контроле лечения острых инфекционных патологий;
  • проведении дифференциальной диагностики вирусных и бактериальных инфекций;
  • оценке состояния иммунной системы (в том числе и при наличии иммунодефицитов);
  • оценке напряжённости иммунного ответа в случае наличия тяжёлых инфекций, ставших хроническими;
  • комплексном обследовании до и после обширного хирургического вмешательства;
  • подозрении на угнетение иммунного статуса, вызванного генетической мутацией;
  • контроле степени напряжённости иммунитета на фоне приёма иммунодепрессанов или иммуностимуляторов.

Норма лимфоцитов в крови

Количество лимфоцитов в крови определяется при помощи проточной цитофлуориметрии, сроки исследования 2-3 суток без учёта дня взятия биоматериала. Важно грамотно интерпретировать полученные результаты, желательно приложение к иммунограмме заключения врача-иммунолога. Окончательный диагноз устанавливается по совокупности данных лабораторных и инструментальных методов обследования, а также клинической картины пациента.

Отмечено, что диагностическая ценность значительно возрастает при оценке напряжённости иммунитета у человека в динамике при регулярных повторных анализах.

Активированные лимфоциты в анализе крови у ребенка и взрослого отличаются, поэтому при расшифровке результатов следует подбирать нормальные (референсные) значения с учётом возраста пациента.

Таблица нормального диапазона лимфоцитов по возрасту

В таблице представлены величины допустимых норм лимфоцитов (отдельных субпопуляций) в крови у детей и взрослых.

Возраст Доля от общего числа лимфоцитов, % Абсолютное количество клеток, *10 6 /л
CD 3 + (Т-лимфоциты)
До 3 месяцев 50 – 75 2065 – 6530
До 1 года 40 – 80 2275 – 6455
1 – 2 года 52 – 83 1455 – 5435
2 – 5 лет 61 – 82 1600 – 4220
5 – 15 лет 64 – 77 1410 – 2020
Старше 15 лет 63 – 88 875 – 2410
CD3+CD4+ (Т-хелперы)
До 3 месяцев 38 – 61 1450 – 5110
До 1 года 35 – 60 1695 – 4620
1 – 2 года 30 – 57 1010 – 3630
2 – 5 лет 33 – 53 910- 2850
5 – 15 лет 34 – 40 720 – 1110
Старше 15 лет 30 – 62 540 – 1450
CD3+CD8+ (Т-цитотоксические лимфоциты)
До 3 месяцев 17 – 36 660 – 2460
До 1 года 16 – 31 710 – 2400
1 – 2 года 16 – 39 555 – 2240
2 – 5 лет 23 – 37 620 – 1900
5 – 15 лет 26 – 34 610 – 930
Старше 15 лет 14 – 38 230 – 1230
CD19+ (В-лимфоциты)
До 2 лет 17 – 29 490 — 1510
2 – 5 лет 20 – 30 720 – 1310
5 – 15 лет 10 – 23 290 – 455
Старше 15 лет 5 – 17 100 – 475
CD3-CD16+CD56+ (NK-клетки)
До 1 года 2 – 15 40 – 910
1 – 2 года 4 – 18 40 – 915
2 – 5 лет 4 – 23 95 – 1325
5 – 15 лет 4 – 25 95 – 1330
Старше 15 лет 4 – 27 75 – 450
Старше 15 лет 1 – 15 20-910

Отклонение от референсных показателей

Пациенты задаются вопросом: что означает, если лимфоциты в крови выше или ниже нормы? Следует отметить, что незначительное отклонение от референсных значений может быть результатом неправильной подготовки к анализу. В этом случае рекомендуется повторить исследование.

Присутствие большого количества атипичных лимфоцитов в анализе крови у ребёнка или взрослого указывает на патологический процесс. Важно определить то, какой именно тип из общей субпопуляции белых кровяных телец отклоняется от нормы.

Т-лимфоциты

Повышение Т-лимфоцитов (CD3+CD19-) наблюдается на фоне лейкоза, острой или хронической стадии инфекционного процесса, гормонального сбоя, длительного употребления лекарств и биологических добавок, а также при высоких физических нагрузках и беременности. В случае снижения критерия выносится предположение о поражении печени (цирроз, рак), аутоиммунных патологиях, иммунодефицитах или угнетении иммунитета лекарственными препаратами.

T-хелперы

Концентрация T-хелперов (CD3 + CD4 + CD45 +) значительно повышается при интоксикации бериллием, ряде аутоиммунных заболеваний и некоторых инфекционных заражениях. Снижение величины является основным лабораторным признаком вторичного иммунодефицита, а также может наблюдаться при приёме стероидных препаратов и циррозе печени.

Повышение T-цитотоксических лимфоцитов

Причинами повышения T-цитотоксических лимфоцитов (CD3 + CD8 + CD45 +) являются:

  • аллергическая реакция немедленного типа;
  • аутоиммунные патологии;
  • лимфоз;
  • вирусная инфекция.

Отклонение от нормы в меньшую сторону указывает на угнетение естественного иммунитета человека.

B-лимфоциты (CD19 + CD3 —) увеличиваются при сильном эмоциональном или физическом стрессе, лимфоме, аутоиммунных болезнях, а также в случае длительной интоксикации парами формальдегида. Реактивные лимфоциты В уменьшаются в случае их миграции в очаг воспалительного процесса.

Два типа натуральных киллеров: CD3 — CD56 + CD45 + и CD3 — CD16 + CD45 + достигают максимальных значений в фазе регенерации организма человека после гепатита и беременности, а также при некоторых онко-, аутоиммунных и печёночных патологиях. Их снижению способствует злоупотребление табакокурением и стероидными препаратами, а также некоторые инфекции.

Как подготовиться к анализу?

Для того чтобы получить максимально достоверные результаты необходимо строго следовать правилам подготовки перед сдачей биоматериала, поскольку лимфоциты в крови чувствительны ко многим внешним факторам (стресс, лекарства). Биоматериал для исследования – сыворотка венозной крови из локтевой вены.

За 1 сутки до сдачи крови пациенту следует отказаться от употребления алкоголя и любых спиртосодержащих продуктов, а также от всех медикаментозных препаратов. В случае невозможности отмены жизненно важных средств нужно сообщить об их приёме мед. персоналу. Кроме того, исключается физическая и эмоциональная нагрузка, что может вызвать повышение исследуемых критериев.

Кровь сдаётся натощак, минимальный интервал между процедурой взятия биоматериала и последним приёмом пищи – 12 часов. За полчаса нужно отказаться от курения.

Выводы

Подводя итог, следует выделить важные аспекты:

  • исследование является основным компонентом при диагностике поражений иммунной системы;
  • нормальные значения подбираются в соответствии с возрастом обследуемого пациента;
  • точность полученных данных зависит не только от правильной реализации методики анализа, но и соблюдения всех правил подготовки самого человека;
  • недопустимо отдельное применение иммунограммы для постановки окончательного диагноза, поскольку отклонение от нормы различных субпопуляций клеток иммунной системы может указывать на ряд схожих патологий. В этом случае назначается дополнительное обследование, включающее набор тестов: С3 и С4 компонента комплемента, циркулирующие иммунные комплексы, а также суммарные иммуноглобулины классов А, G и M.
  • Подробнее

Общее количество Т-лимфоцитов в крови у взрослых в норме - 58-76 %, абсолютное количество - 1,1-1,7-10"/л.

Зрелые Т-лимфоциты «отвечают» за реакции клеточного иммунитета и осуществляют иммунологический надзор за антигенным гомеостазом в организме. Они образуются в кост­ном мозге, а получают дифференцировку в вилочковой железе, где разделяются на эффек-торные (Т-лимфоциты-киллеры, Т-лимфоциты гиперчувствительности замедленного типа) и регуляторные (Т-лимфоциты-хелперы, Т-лимфоциты-супрессоры) клетки. В соответствии с этим Т-лимфоциты выполняют в организме две важные функции: эффекторную и регуля-торную. Эффекторная функция Т-лимфоцитов - специфическая цитотоксичность по отно­шению к чужеродным клеткам. Регуляторная функция (система Т-хелперы - Т-супрессоры) состоит в контроле за интенсивностью развития специфической реакции иммунной системы на чужеродные антигены. Снижение абсолютного количества Т-лимфоцитов в крови свиде­тельствует о недостаточности клеточного иммунитета, повышение - о гиперактивности им­мунитета и наличии иммунопролиферативных заболеваний.

Развитие любого воспалительного процесса сопровождается практически на всем его про­тяжении снижением содержания Т-лимфоцитов. Это наблюдается при воспалениях самой раз­нообразной этиологии: различных инфекциях, неспецифических воспалительных процессах, при разрушении поврежденных тканей и клеток после операции, травмы, ожогов, инфаркта, разрушении клеток злокачественных опухолей, трофических разрушениях и т.д. Снижение ко­личества Т-лимфоцитов определяется интенсивностью воспалительного процесса, однако такая закономерность наблюдается не всегда. Т-лимфоциты наиболее быстро из всех иммуно-компетентных клеток реагируют на начало воспалительного процесса. Эта реакция проявляет­ся еще до развития клинической картины заболевания. Повышение количества Т-лимфоцитов в течение воспалительного процесса является благоприятным признаком, а высокий уровень Т-лимфоцитов при резко выраженных клинических проявлениях такого процесса, напро­тив, - неблагоприятный признак, указывающий на вялое течение воспалительного процесса с тенденцией к хронизации. Полное завершение воспалительного процесса сопровождается нормализацией количества Т-лимфоцитов. Повышение относительного количества Т-лимфо­цитов не имеет для клиники большого значения. Однако увеличение абсолютного количества Т-лимфоцитов в крови очень важно для диагностики лейкозов. Заболевания и состояния, при­водящие к изменению количества Т-лимфоцитов в крови, представлены в табл. 7.19.



Таблица 7.19. Заболевания и состояния, приводящие к изменению количества

Т-лимфоцитов (CD3) в крови


Продолжение табл.7.19

Т-лимфоциты-хелперы (CD4) в крови

Количество Т-лимфоцитов-хелперов в крови у взрослых в норме - 36-55 %, абсолютное

Количество - 0,4-1,110"/л-

Т-лимфоциты - помощники (индукторы) иммунного ответа, клетки, регулирующие силу иммунного ответа организма на чужеродный антиген, контролирующие постоянство внутренней среды организма (антигенный гомеостаз) и обусловливающие повышенную вы­работку антител. Увеличение количества Т-лимфоцитов-хелперов свидетельствует о гиперак­тивности иммунитета, снижение - об иммунологической недостаточности.

Ведущее значение в оценке состояния иммунной системы имеет соотношение Т-хелпе-ров и Т-супрессоров в периферической крови, так как от этого зависит интенсивность им­мунного ответа. В норме цитотоксических клеток и антител должно вырабатываться столько, сколько их необходимо для выведения того или иного антигена. Недостаточная активность Т-супрессоров ведет к преобладанию влияния Т-хелперов, что способствует более сильному иммунному ответу (выраженной антителопродукции и/или длительной активации Т-эффек-торов). Избыточная активность Т-супрессоров, напротив, приводит к быстрому подавлению и абортивному течению иммунного ответа и даже явлениям иммунологической толерантнос­ти (иммунологический ответ на антиген не развивается). При сильном иммунном ответе воз­можно развитие аутоиммунных и аллергических процессов. Высокая функциональная актив­ность Т-супрессоров при таком ответе не позволяет развиться адекватному иммунному отве­ту, в связи с чем в клинической картине иммунодефицитов преобладают инфекции и пред­расположенность к злокачественному росту. Индекс CD4/CD8 1,5-2,5 соответствует нор-мергическому состоянию, более 2,5 - гиперактивности, менее 1,0 - иммунодефициту. При тяжелом течении воспалительного процесса соотношение CD4/CD8 может быть меньше 1. Принципиальное значение это соотношение имеет при оценке иммунной системы у боль­ных СПИДом. При данном заболевании вирус иммунодефицита человека избирательно по­ражает и разрушает СО4-лимфоциты, в результате чего соотношение CD4/CD8 понижается до значений, значительно меньше 1.

Повышение соотношения CD4/CD8 (до 3) нередко отмечается в острой фазе раз­личных воспалительных заболеваний за счет повышения уровня Т-хелперов и снижения Т-супрессоров. В середине воспалительного заболевания отмечается медленное снижение Т-хелперов и повышение Т-супрессоров. При стихании воспалительного процесса эти по­казатели и их соотношение нормализуются. Повышение соотношения CD4/CD8 характер­но практически для всех аутоиммунных заболеваний: гемолитической анемии, иммунной тромбоцитопении, тиреоидита Хашимото, пернициозной анемии, синдрома Гудпасчера, системной красной волчанки, ревматоидного артрита. Увеличение соотношения CD4/CD8 за счет снижения уровня CD8 при перечисленных заболеваниях выявляется обычно в раз­гаре обострения при большой активности процесса. Снижение соотношения CD4/CD8 вследствие роста уровня CD8 характерно для ряда опухолей, в частности саркомы Капоши. Заболевания и состояния, приводящие к изменению количества CD4 в крови, представле­ны в табл. 7.20.

Таблица 7.20. Заболевания и состояния, приводящие к изменению количества CD4 в крови


Продолжение табл. 7.20

иммуноглобулинов (в начале иммунного ответа B-клетки синтезируют IgM , позже переключаются на продукцию IgG , IgE , IgA).

Энциклопедичный YouTube

    1 / 5

    ✪ B-лимфоциты и T-лимфоциты популяций CD4+ и CD8+

    ✪ Цитотоксические T-лимфоциты

    ✪ T-лимфоциты

    ✪ Лимфоциты

    ✪ B-лимфоциты (B-клетки)

    Субтитры

    Я уже рассказал об основных клетках специфической иммунной системы, а сейчас мы еще раз обобщим изученное. Давайте начнем с B-лимфоцита, которого я всегда рисую синими цветом.. Вот он перед вами. У B-лимфоцитов на поверхности присутствуют мембранные иммуноглобулины, причем у каждого такого лимфоцита свой вариант вариабельного домена. Повторю: у B-лимфоцитов на поверхности есть мембранные иммуноглобулины, и у каждого такого лимфоцита свой вариант вариабельного домена. Вариабельные домены нарисую розовым. У другого B-лимфоцита будут другие вариабельные домены. Поэтому они могут реагировать на самые разные антигены, проникшие в организм. При этом B-лимфоциты активируются. Что для этого нужно и что при этом происходит? Давайте поговорим о том, что происходит при активировании В-лимфоцитов. Что нужно для запуска активации? Для этого нужно, чтобы патоген связался с мембранным иммуноглобулином. Запишем, что патоген связывается. Патоген связывается с мембранным иммуноглобулином. Но этого мало. Обычно B-лимфоциту нужна стимуляция T-лимфоцитом. Так и пишем: стимуляция Т- лимфоцитом. В какой ситуации необходима такая стимуляция? B-лимфоцит является антигенпрезентирующей клеткой. Он поглощает антиген, расщепляет его и демонстрирует вместе с ГКГ класса 2. Его мы тоже сейчас нарисуем. Это ГКГ класса 2. С ним связываются фрагменты антигена. С этим комплексом связывается активированный T-хелпер, у которого есть рецептор с вариабельным доменом, специфичным для этого конкретного антигена. Да, кривоватый получился рецептор, но суть ясна, по крайней мере, я буду на это надеяться. После активации следует дифференцировка: клетка делится, и ее потомки могут стать эффекторными клетками. Это справедливо и для T-, и для B-лимфоцитов. После активации лимфоцит производит эффекторные клетки и клетки памяти. Клетки памяти сохраняются надолго, и их в результате деления получается много. При повторном проникновении того же патогена он с большой вероятностью наткнется на клетку памяти, запустив быстрый иммунный ответ. Эффекторные B-лимфоциты – это фабрики по производству иммуноглобулинов. Итак, эффекторные B-лимфоциты – производят иммуноглобулин. Логика такая: раз антитело подходит к антигену, попавшему в организм, нужно синтезировать побольше. Все производственные мощности клетки принимаются синтезировать антитела. Расскажу вам один факт, который мне подсказала жена. Подслушав то, как я записывал прошлое видео. Она специалист в гематологии и разбирается в иммунологии, так что я ей в этом доверяю: она в этом деле эксперт. В прошлом ролике я опрометчиво заявил, что антитела вырабатывают активированные эффекторные B-лимфоциты. Так оно и есть на самом деле – антитела вырабатываются исключительно B-лимфоцитами. Однако, для секретирующих антитела клеток есть свое название. Эти эффекторные B-лимфоциты обычно называют плазматическими клетками. Запишу термин. В ходе дифференцировки меняется название. Так называют B-лимфоцит, который начал выделять антитела. После этого его называют исключительно плазматической клеткой. Так что на вопрос о том, какие клетки производят антитела, не отвечайте, что это B-лимфоциты. Правильным будет ответ: плазматические клетки. Это общепринятый термин, используемый в иммунологии, а также ревматологии. Простите, я сказал, что моя жена – гематолог? Нет, она ревматолог. Иногда я в этом путаюсь. Так вот, суть B-лимфоцито в производстве антител, которые свяжутся с антигенами вирусов или бактерий и сделают их заметными для макрофагов и прочих фагоцитов. Но вот и все о них, теперь переходим к T-лимфоцитам. Я расскажу о них то, чего не было в прошлых роликах. Так вот, существует две разновидности T-лимфоцитов. Вы уже знаете о хелперах и цитотоксических T-лимфоцитах, но есть и другая классификация лимфоцитов, и я расскажу вам о ней. Итак, две разновидности. У обеих – T-клеточный рецептор. Нарисую его вот таким образом. T-клеточный рецептор. Кроме того, на их мембранах есть ряд других белков. У некоторых T-лимфоцитов есть мембранный белок, называемый CD4. CD4. У других T-лимфоцитов есть другой белок – это CD8. Его тоже подпишем. CD8. Лимфоцит справа называется CD8-положительным T-лимфоцитом. У него на мембране есть CD8. А вот CD4-положительный T-лимфоцит. Вот две разновидности. Их разделяют по этим белкам. Белок CD4 – это рецептор, который имеет сродство с белками ГКГ класса 2. Большинство CD4-положительных клеток – это T-хелперы. В большинстве случаев, если в разговоре упоминают CD4-положительные клетки, то по привычке имеют в виду именно хелперные T-лимфоциты. Обычно говорят о них. Пожалуй, я подпишу его - T-хелпер. Рецептор CD8 имеет сродство с ГКГ класса 1. Укажем это на рисунке. У раковых клеток ГКГ класса 1 на мембране связан с антигенами рака. Поэтому CD8 характерен для цитотоксических лимфоцитов. CD8 характерен для цитотоксических лимфоцитов. Обычно до того как клетка активирована, ее называют CD4- или CD8-положительной, а о функции лимфоцита говорят уже после активации. Уже после. Это особенности терминологии. Надеюсь, суть вы улавили. Теперь вспомним, чем занимается этот лимфоцит. Он связывается с белками ГКГ, которые находятся на мембране вместе с антигенами. Вот ГКГ класса 1. Как я уже говорил в прошлом ролике, он есть у каждой клетки с ядром. Допустим, в клетке произошло что-то плохое. Что-то нехорошее, может быть, это вирус. Может быть, рак. Пораженная клетка должна умереть, иначе она будет копировать вирус или размножаться, если это опухоль. Так вот, CD8-положительные T-лимфоциты убивают клетки, пораженные вирусом или онкологией. Они убивают пораженные клетки, которые в противном случае могли угрожать всему организму, в целом. T-хелперы – совсем другое дело. Давайте возьмем дендритную клетку – антигенпрезентирующую клетку. У нее есть ГКГ класса 2, с которым соединяются фрагменты переваренного антигена. Он активирует хелперные T-лимфоциты, которые делятся и дифференцируются в эффекторные клетки, а так же клетки памяти. У эффекторного T-лимфоцита есть несколько функций. Хелперный T-лимфоцит активирует B-лимфоциты и выделяет цитокины. Выделяет цитокины. Активированный лимфоцит выделяет множество веществ, которые служат сигналом другим клеткам, например другим лимфоцитам, поднимая при этом тревогу. Часть этих цитокинов помогает цитотоксическим лимфоцитам в их активации. Цитокины поднимают тревогу, и CD8-положительные, то есть цитотоксические T-лимфоциты, эффекторные лимфоциты, принимаются убивать клетки. Что касается клеток памяти, то это копии оригинальных лимфоцитов, которые надолго сохраняются в этом месте на случай повторения угрозы, чтобы обеспечить более быстрый ответ. Надеюсь, что не сильно вас запутал новыми терминами, но это было необходимо. И теперь вы знаете, что антитела синтезируют не B-лимфоциты, не их, а клетки, у которых есть собственное название. Это плазматические клетки или плазмоциты.

Типы Т-лимфоцитов

Т-лимфоциты, обеспечивающие центральную регуляцию иммунного ответа.

Дифференциация в тимусе

Все Т-клетки берут своё начало от гемопоэтических стволовых клеток красного костного мозга , которые мигрируют в тимус и дифференциируются в незрелые тимоциты . Тимус создаёт микросреду, необходимую для развития полностью функционального репертуара Т-клеток, который является ГКГ-ограниченным и толерантным к самому себе.

Дифференциация тимоцитов разделяется на разные стадии в зависимости от экспрессии различных поверхностных маркеров (антигенов). На самой ранней стадии, тимоциты не экспрессируют корецепторы CD4 и CD8, и поэтому классифицируются как двойные негативные (англ. Double Negative (DN) ) (CD4-CD8-). На следующей стадии тимоциты экспрессируют оба корецептора и называются двойными позитивными (англ. Double Positive (DP) ) (СD4+CD8+). Наконец на финальной стадии происходит селекция клеток, которые экспрессируют только один из корецепторов (англ. Single Positive (SP) ): или (CD4+), или (CD8+).

Раннюю стадию можно разделить на несколько подстадий. Так, на подстадии DN1 (англ. Double Negative 1 ), тимоциты имеют следующую комбинацию маркеров: CD44 +CD25 -CD117 +. Клетки с данной комбинацией маркеров ещё называют ранними лимфоидными предшественниками (англ. Early Lymphoid Progenitors (ELP) ). Прогрессируя в своей дифференциации, ELP активно делятся и окончательно теряют способность трансформироваться в другие типы клеток (например В-лимфоциты или миелоидные клетки). Переходя на подстадию DN2 (англ. Double Negative 2 ), тимоциты экспрессируют CD44 +CD25 +CD117 + и становятся ранними Т-клеточными предшественниками (англ. Early T-cell Progenitors (ETP) ). В течение DN3 подстадии (англ. Double Negative 3 ), ETP клетки имеют комбинацию CD44 -CD25 + и вступают в процесс β-селекции.

β-селекция

Гены Т-клеточного рецептора состоят из повторяющихся сегментов, принадлежащих к трём классам: V (англ. variable ), D (англ. diversity ) и J (англ. joining ). В процессе соматической рекомбинации генные сегменты, по одному из каждого класса, соединяются вместе (V(D)J-рекомбинация). Случайное объединение последовательностей сегментов V(D)J приводит к появлению уникальных последовательностей вариабельных доменов каждой из цепей рецептора. Случайный характер образования последовательностей вариабельных доменов позволяет генерировать Т-клетки, способные распознавать большое количество различных антигенов, и, как следствие, обеспечивать более эффективную защиту против быстро эволюционирующих патогенов. Однако этот же механизм зачастую приводит к образованию нефункциональных субъединиц Т-клеточного рецептора. Гены, кодирующие β-субъединицу рецептора, первыми подвергаются рекомбинации в DN3-клетках. Чтобы исключить возможность образования нефункционального пептида, β-субъединица образует комплекс с инвариабельной α-субъединицей пре-T-клеточного рецептора, формируя т. н. пре-T-клеточный рецептор (пре-ТКР) . Клетки, неспособные образовывать функциональный пре-ТКР, погибают в результате апоптоза . Тимоциты, успешно прошедшие β-селекцию, переходят на подстадию DN4 (CD44 -CD25 -) и подвергаются процессу позитивной селекции .

Позитивная селекция

Клетки, экспрессирующие на своей поверхности пре-ТКР все ещё не являются иммунокомпетентными, так как не способны связываться с молекулами главного комплекса гистосовместимости. Для узнавания молекул ГКГ T-клеточным рецептором необходимо наличие корецепторов CD4 и CD8 на поверхности тимоцитов. Образование комплекса между пре-ТКР и корецептором CD3 приводит к ингибированию перестроек генов β-субъединицы и в то же время вызывает активацию экспрессии генов CD4 и CD8. Таким образом тимоциты становятся двойными позитивными (DP) (CD4+CD8+). DP-тимоциты активно мигрируют в корковое вещество тимуса, где происходит их взаимодействие с клетками кортикального эпителия , экспрессирующими белки обоих классов ГКГ (MHC-I и MHC-II). Клетки, неспособные взаимодействовать с белками ГКГ кортикального эпителия, подвергаются апоптозу , в то время как клетки, успешно осуществившие такое взаимодействие, начинают активно делиться.

Негативная селекция

Тимоциты, прошедшие позитивную селекцию, начинают мигрировать к кортико-медуллярной границе тимуса. Попадая в медуллу, тимоциты взаимодействуют с собственными антигенами организма, презентированными в комплексе с белками ГКГ на медуллярных тимических эпителиальных клетках (мТЭК). Тимоциты, активно взаимодействующие с собственными антигенами, подвергаются апоптозу . Негативная селекция предотвращает появление самоактивирующихся Т-клеток, способных вызывать аутоиммунные заболевания клон . Некоторые из клеток этого клона превращаются в эффекторные Т-клетки , которые выполняют функции, специфичные для данного типа лимфоцита (например, выделяют цитокины в случае Т-хелперов или же лизируют поражённые клетки в случае Т-киллеров). Другая часть активированных клеток трансформируется в Т-клетки памяти . Клетки памяти сохраняются в неактивной форме после первичного контакта с антигеном до тех пор, пока не наступает повторное взаимодействие с тем же антигеном. Таким образом, Т-клетки памяти хранят информацию о ранее действовавших антигенах и обеспечивают вторичный иммунный ответ, осуществляющийся в более короткие сроки, чем первичный.

Взаимодействие Т-клеточного рецептора и корецепторов (СD4, CD8) с главным комплексом гистосовместимости важно для успешной активации наивных Т-клеток, однако его самого по себе недостаточно для дифференциации в эффекторные клетки. Для последующей пролиферации активированных клеток необходимо взаимодействие т. н. костимулирующих молекул. Для Т-хелперов такими молекулами являются рецептор CD28 на поверхности Т-клетки и иммуноглобулин B7 на поверхности антигенпрезентирующей клетки.

Основная задача T-лимфоцитов - распознавание чужеродных или изменённых собственных антигенов в составе комплекса с молекулами MHC. Если на поверхности своих клеток будут представлены чужеродные или изменённые свои молекулы, T-лимфоцит запускает их уничтожение.

В отличие от B-лимфоцитов, T-лимфоциты не продуцируют растворимых форм антигенраспознающих молекул. Более того, большинство T-лимфоцитов не способны распознавать и связывать растворимые антигены.

Для того чтобы T-лимфоцит «обратил на антиген своё внимание», другие клетки должны каким-то образом «пропустить» антиген через себя и выставить его на своей мембране в комплексе с MHC-I или MHC-II. Это и есть феномен презентации антигена T-лимфоциту. Распознавание такого комплекса T-лимфоцитом - двойное распознавание, или MHC-рестрикция T-лимфоцитов.

АНТИГЕНРАСПОЗНАЮЩИЙ РЕЦЕПТОР T-ЛИМФОЦИТОВ

Антигенраспознающие рецепторы T-клеток - TCR состоят из цепей, принадлежащих к суперсемейству иммуноглобулинов (см. рис. 5-1). Выступающий над поверхностью клетки антигенраспознающий участок TCR - гетеродимер, т.е. состоит из двух разных полипептидных цепей. Известны два варианта TCR, обозначаемые как αβTCR и γδTCR. Эти варианты различаются составом полипептидных цепей антигенраспознающего участка. Каждый T-лимфоцит экспрессирует только 1 вариант рецептора. αβT-клетки были открыты раньше и изучены подробнее, чем γδT-лимфоциты. В связи с этим строение антигенраспознающего рецептора T-лимфоцитов удобнее описывать на примере αβTCR. Трансмембранно расположенный комплекс TCR состоит из 8 полипептидных

Рис. 6-1. Схема Т-клеточного рецептора и связанных с ним молекул

цепей (гетеродимера α- и β-цепей собственно TCR, двух вспомогательных цепей ζ, а также по одному гетеродимеру ε/δ- и ε/ γ-цепей молекулы СD3) (рис. 6-1).

. Трансмембранные цепи α и β TCR. Это 2 примерно одинаковые по размеру полипептидные цепи - α (молекулярная масса 40-60 кДа, кислый гликопротеин) и β (молекулярная масса 40-50 кДа, нейтральный или основный гликопротеин). Каждая из этих цепей содержит по 2 гликозилированных домена во внеклеточной части рецептора, гидрофобную (положительно заряженную за счёт остатков лизина и аргинина) трансмембранную часть и короткий (из 5-12 остатков аминокислот) цитоплазматический участок. Внеклеточные части обеих цепей соединены одной дисульфидной связью.

- V-область. Наружные внеклеточные (дистальные) домены обеих цепей имеют вариабельный аминокислотный состав. Они гомологичны V-области молекул иммуноглобулинов и составляют V-область TCR. Именно V-области α- и β-цепей вступают в связь с комплексом MHC-пептид.

-C-область. Проксимальные домены обеих цепей гомологичны константным областям иммуноглобулинов; это C-области TCR.

Короткий цитоплазматический участок (как α-, так и β-цепи) не может самостоятельно обеспечить проведение сигнала внутрь клетки. Для этого служат 6 дополнительных полипептидных цепей: γ, δ, 2ε и 2ζ.

.Комплекс CD3. Цепи γ, δ, ε между собой образуют гетеродимеры γε и δε (вместе их называют комплекс CD3). Этот комплекс необходим для экспрессии α- и β-цепей, их стабилизации и проведения сигнала внутрь клетки. Этот комплекс состоит из внеклеточной, трансмембранной (отрицательно заряженной и потому электростатически связанной с трансмембранными участками α- и β-цепей) и цитоплазматической частей. Важно не путать цепи CD3-комплекса с γδ-цепями димера TCR.

.ζ-Цепи соединены между собой дисульфидным мостиком. Большая часть этих цепей расположена в цитоплазме. ζ-Цепи осуществляют проведение сигнала внутрь клетки.

.ITAM-последовательности. Цитоплазматические участки полипептидных цепей γ, δ, ε и ζ содержат 10 последовательностей ITAM (1 последовательность в каждой γ-, ε- и δ-цепях и 3 - в каждой ζ-цепи), взаимодействующих с Fyn - тирозинкиназой цитозоля, активация которой инициирует начало биохимических реакций по проведению сигнала (см. рис. 6-1).

В связывании антигена участвуют ионные, водородные, ван-дерваальсовы и гидрофобные силы; конформация рецептора при этом существенно изменяется. Теоретически каждый TCR способен связывать порядка 10 5 разных антигенов, причём не только родственных по строению (перекрёстно реагирующих), но и не гомологичных по структуре. Однако в реальности полиспецифичность TCR ограничивается распознаванием всего лишь нескольких структурно схожих антигенных пептидов. Структурной основой этого феномена является особенность одновременного распознавания TCR комплекса «МНС-пептид».

Корецепторные молекулы CD4 и CD8

Помимо самого TCR каждый зрелый T-лимфоцит экспрессирует одну из так называемых корецепторных молекул - CD4 или CD8, которые также взаимодействуют с молекулами MHC на АПК или клеткахмишенях. Каждая из них имеет цитоплазматический участок, связанный

с тирозинкиназой Lck, и, вероятно, вносит свой вклад в проведение сигнала внутрь клетки при распознавании антигена.

.CD4 (β2-доменом) молекулы MHC-II (принадлежит к суперсемейству иммуноглобулинов, см. рис. 5-1, б). CD4 имеет молекулярную массу 55 кДа и 4 домена во внеклеточной части. При активации T-лимфоцита одну молекулу TCR «обслуживают» 2 молекулы CD4: вероятно, происходит димеризация молекул CD4.

.CD8 связывается с инвариантной частью (αЗ-доменом) молекулы MHC-I (принадлежит к суперсемейству иммуноглобулинов, см. рис. 5-1, а). CD8 - гетеродимер цепей α и β , соединённых дисульфидной связью. В некоторых случаях обнаруживают гомодимер из двух α-цепей, который также может взаимодействовать с MHC-I. Во внеклеточной части каждая из цепей имеет по одному иммуноглобулиноподобному домену.

Гены T-клеточного рецептора

Гены α-, β-, γ- и δ-цепей (рис. 6-2, также см. рис. 5-4) гомологичны генам иммуноглобулинов и претерпевают при дифференцировке T-лимфоцитов рекомбинацию ДНК, что теоретически обеспечивает генерацию порядка 10 16 -10 18 вариантов антигенсвязывающих рецепторов (реально это разнообразие ограничено числом лимфоцитов в организме до 10 9).

.Гены α-цепи имеют ~54 V-сегмента, 61 J- и 1 C-сегмент.

.Гены β-цепи содержат ~65 V-сегментов, 2 D-сегмента, 13 J-сегментов и 2 C-сегмента.

.Гены δ-цепи. Между V- и J-сегментами α-цепи расположены гены D-(3), J-(4) и C-(1) сегментов δ-цепи γδTCR. V-сегменты δ-цепи «вкраплены» среди V-сегментов α-цепи.

.Гены γ-цепи γδTCR имеют 2 C-сегмента, 3 J-сегмента перед первым C-сегментом и 2 J-сегмента перед вторым C-сегментом, 15 V-сегментов.

Перестройка генов

.Рекомбинация ДНК происходит при объединении V-, D- и J-сегментов и катализируется тем же комплексом рекомбиназ, что и при дифференцировке B-лимфоцитов.

.После перестройки VJ в генах α-цепи и VDJ в генах β-цепи, а также после присоединения некодируемых N- и P-нуклеотидов с ДНК

Рис. 6-2. Гены α- и β-цепей антигенраспознающего рецептора T-лимфоцитов человека

транскрибируется РНК. Объединение с C-сегментом и удаление лишних (неиспользуемых) J-сегментов происходит при сплайсинге первичного транскрипта.

. Гены α-цепи могут перестраиваться неоднократно при уже правильно перестроенных и экспрессированных генах β-цепи. Именно поэтому есть некоторая вероятность того, что одна клетка может нести более одного варианта TCR.

. Соматическому гипермутагенезу гены TCR не подвергаются.

ПРОВЕДЕНИЕ СИГНАЛА С АНТИГЕНРАСПОЗНАЮЩИХ РЕЦЕПТОРОВ ЛИМФОЦИТОВ

TCR и BCR имеют ряд общих закономерностей регистрации и проведения в клетку активационных сигналов (см. рис. 5-11).

. Кластеризация рецепторов. Для активации лимфоцита необходима кластеризация антигенраспознающих рецепторов и корецепторов, т.е. «сшивка» нескольких рецепторов одним антигеном.

. Тирозинкиназы. В проведении сигнала играют значительную роль процессы фосфорилирования/дефосфорилирования белков по остатку тирозина под действием тирозинкиназ и тирозинфосфатаз,

ведущие к активации или инактивации этих белков. Эти процессы легко обратимы и «удобны» для быстрых и гибких реакций клетки на внешние сигналы.

. Киназы Src. Богатые тирозином ITAM-последовательности цитоплазматических участков иммунорецепторов подвергаются фосфорилированию под действием нерецепторных (цитоплазматических) тирозинкиназ семейства Src (Fyn, Blk, Lyn в B-лимфоцитах, Lck и Fyn - в T-лимфоцитах).

. Киназы ZAP-70 (в T-лимфоцитах) или Syk (в B-лимфоцитах), связываясь с фосфорилированными ITAM-последовательностями, активируются и начинают фосфорилировать адапторные белки: LAT (Linker for Activation of T cells) (киназой ZAP-70), SLP-76 (киназой ZAP-70) или SLP-65 (киназой Syk).

. Адапторные белки рекрутируют фосфоинозитид-3-киназу (PI3K). Эта киназа в свою очередь активирует серин/треониновую протеинкиназу Akt, вызывая усиление белкового биосинтеза, что способствует ускоренному росту клеток.

. Фосфолипаза C γ(см. рис. 4-8). Киназы семейства Tec (Btk - в B-лимфоцитах, Itk - в T-лимфоцитах) связывают адапторные белки и активируют фосфолипазу Cγ(PLCγ).

PLCγрасщепляет фосфатидилинозитдифосфат (PIP 2) клеточной мембраны на инозит-1,4,5-трифосфат (IP 3) и диацилглицерин

(DAG).

DAG остаётся в мембране и активирует протеинкиназу С (PKC) - серин/треониновую киназу, которая активирует эволюционно «древний» фактор транскрипции NFκB.

IP 3 связывается со своим рецептором в эндоплазматическом ретикулуме и высвобождает ионы кальция из депо в цитозоль.

Свободный кальций активирует кальцийсвязывающие белки - кальмодулин, регулирующий активность ряда других белков, и кальциневрин, дефосфорилирующий и тем самым активирующий ядерный фактор активированных T-лимфоцитов NFAT (Nuclear Factor of Activated T cells).

. Ras и другие малые G-белки в неактивном состоянии связаны с ГДФ, но адапторные белки заменяют последний на ГТФ, чем переводят Ras в активное состояние.

Ras обладает собственной ГТФазной активностью и быстро отщепляет третий фосфат, чем возвращает себя в неактивное состояние (самоинактивируется).

В состоянии кратковременной активации Ras успевает активировать очередной каскад киназ, называемых MAPK (MitogenActivated Protein Kinase), которые в итоге активируют фактор транскрипции AP-1 в ядре клетки. На рис. 6-3 схематично представлены основные пути передачи сигналов с TCR. Активационный сигнал включается при связывании TCR с лигандом (комплексом молекула МНС-пептид) при участии корецептора (CD4 или CD8) и костимулирующей молекулы CD28. Это приводит к активации киназ Fyn и Lck. Красным цветом отмечены участки ITAM в цитоплазматических частях полипептидных цепей CD3. Отражена роль Src-киназ, связанных с рецептором, в фосфорилировании белков: как рецепторных, так и сигнальных. Обращает на себя внимание чрезвычайно широкий спектр эффектов киназы Lck, связанной с корецепторами; роль киназы Fyn установлена с меньшей определённостью (отражено в прерывистом характере линий).

Рис. 6-3. Источники и направление пусковых активационных сигналов при стимуляции Т-лимфоцитов. Обозначения: ZAP-70 (ζ-associated proteinkinase, мол. масса 70 кДа) - протеинкиназа р70, связанная с ζ-цепью; PLCγ (Phospholipase С γ) - фосфолипаза С, изоформа γ; PI3K (Phosphatidyl Inositol 3-kinase) - фосфатидилинозитол 3-киназа; Lck, Fyn -тирозинкиназы; LAT, Grb, SLP, GADD, Vav - адапторные белки

Ключевую роль в посредничестве между рецепторными киназами и адапторными молекулами и ферментами играет тирозинкиназа ZAP-70. Она активирует (через фосфорилирование) адапторные молекулы SLP-76 и LAT, а последняя передаёт активационный сигнал другим адапторным белкам GADD, GRB и активирует у-изоформу фосфолипазы С (PLCy). До этого этапа в передачу сигнала вовлекаются исключительно факторы, связанные с клеточной мембраной. Важный вклад во включение сигнальных путей вносит костимулирующая молекула CD28, реализующая своё действие через связанную с ней липидную киназу PI3K (Phosphatidyl Inositol 3-kinase). Основной мишенью киназы PI3K служит фактор Vav, связанный с цитоскелетом.

В результате формирования сигнала и передачи его от рецептора Т-клетки к ядру образуются 3 транскрипционных фактора - NFAT, AP-1 и NF-kB, индуцирующие экспрессию генов, контролирующих процесс активации Т-лимфоцитов (рис. 6-4). К образованию NFAT приводит сигнальный путь, не зависящий от костимуляции, который включается благодаря активации фосфолипазы С и реализуется с участием ионов

Рис. 6-4. Схема сигнальных путей при активации Т-клеток. NFAT (Nuclear factor of activated T cells), AP-1 (Activation protein-1), NF-κB (Nuclear factor of к -gene of B cells) - факторы транскрипции

Са 2+ . Этот путь вызывает активацию кальциневрина, который, обладая активностью фосфатазы, дефосфорилирует цитозольный фактор NFAT-Р. Благодаря этому NFAT-Р приобретает способность мигрировать в ядро и связываться с промоторами активационных генов. Фактор АР-1 формируется как гетеродимер из белков с-Fos и с-Jun, образование которых индуцируется благодаря активации соответствующих генов под влиянием факторов, образующихся в результате реализации трёх компонентов МАР-каскада. Эти пути включаются при участии коротких ГТФ-связывающих белков Ras и Rac. Значительный вклад в реализацию МАР-каскада вносят сигналы, зависящие от костимуляции через молекулу CD28. Третий транскрипционный фактор, NF-kB, известен как основной транскрипционный фактор клеток врождённого иммунитета. Он активируется в результате расщепления блокирующей субъединицы IkB киназой IKK, которая в Т-клетках активируется в ходе передачи сигнала, зависимого от изоформы ϴ протеинкиназы С (PKC9). Основной вклад во включение этого сигнального пути вносят костимулирующие сигналы от CD28. Сформировавшиеся транскрипционные факторы, связавшись с промоторными участками генов, индуцируют их экспрессию. Для начальных этапов реакции Т-клеток на стимуляцию особенно важна экспрессия генов IL2 и IL2R, что обусловливает выработку ростового фактора Т-клеток ИЛ-2 и экспрессию его высокоаффинного рецептора на Т-лимфоцитах. В результате ИЛ-2 выступает как аутокринный ростовой фактор, обусловливающий пролиферативную экспансию Т-клеток клонов, вовлечённых в реакцию на антиген.

ДИФФЕРЕНЦИРОВКА T-ЛИМФОЦИТОВ

В основе выделения этапов развития Т-лимфоцитов лежит состояние рецепторных V-генов и экспрессии TCR, а также корецепторов и других мембранных молекул. Схема дифференцировки Т-лимфоцитов (рис. 6-5) аналогична приведённой выше схеме развития В-лимфоцитов (см. рис. 5-13). Приведены ключевые характеристики фенотипа и ростовых факторов развивающихся Т-клеток. Принятые обозначения стадий развития Т-клеток определяются экспрессией корецепторов: DN (от Double-Negative, CD4CD8) - двойные отрицательные, DP (от Double-Positive, CD4 + CD8 +) - двойные положительные, SP (от Single-Positive, CD4 + CD8 - и CD4CD8 +) - одинарно положительные. Деление DNтимоцитов на стадии DN1, DN2, DN3 и DN4 основывается на характере

Рис. 6-5. Развитие Т-лимфоцитов

экспрессии молекул CD44 и CD25. Другие условные обозначения: SCF (от Stem Cell Factor) - фактор стволовых клеток, lo (low; метка индекса) - низкий уровень экспрессии. Стадии реаранжировки: D-J - предварительный этап, соединение сегментов D и J (только в генах β- и δ-цепей TCR, см. рис. 6-2), V-DJ - завершающий этап, соединение зародышевого V-гена с объединённым сегментом DJ.

.Тимоциты дифференцируются из общей клетки-предшественника, которая ещё вне тимуса экспрессирует такие мембранные маркёры, как CD7, CD2, CD34 и цитоплазматическую форму CD3.

.Коммитированные к дифференцировке в T-лимфоциты клеткипредшественники мигрируют из костного мозга в субкапсулярную зону коры тимуса, где примерно в течение одной недели медленно пролиферируют. На тимоцитах появляются новые мембранные молекулы CD44 и CD25.

.Затем клетки перемещаются вглубь коры тимуса, молекулы CD44 и CD25 исчезают с их мембраны. В этой стадии начинается перестройка генов β -, γ- и δ-цепей TCR. Если гены γ- и δ-цепей успевают продуктивно, т.е. без сдвига рамки считывания, перестроиться раньше, чем гены β-цепи, то лимфоцит дифференцируется далее как γδT. В противном случае происходит экспрессия β-цепи на мембране в комплексе с pT α (инвариантной суррогатной цепью, заменяющей на этом этапе настоящую α-цепь) и CD3. Это служит

сигналом к прекращению перестройки генов γ- и δ-цепей. Клетки начинают пролиферировать и экспрессировать одновременно CD4 и CD8 - дважды позитивные тимоциты. При этом накапливается масса клеток с уже готовой β-цепью, но с ещё не перестроенными генами α-цепи, что вносит свой вклад в разнообразие αβ-гетеродимеров.

.На следующем этапе клетки перестают делиться и начинают перестраивать Vα-гены, причём несколько раз в течение 3-4 сут. Перестройка генов α-цепи приводит к необратимой делеции δ-локуса, расположенного между сегментами генов α-цепи.

.Происходят экспрессия TCR с каждым новым вариантом α-цепи и отбор (селекция) тимоцитов по силе связывания с комплексом MHC-пептид на мембранах эпителиальных клеток тимуса.

Позитивная селекция: погибают тимоциты, не связавшие ни одного из доступных комплексов MHC-пептид. В результате позитивной селекции в тимусе погибает около 90% тимоцитов.

Негативная селекция уничтожает клоны тимоцитов, связывающих комплексы MHC-пептид со слишком высокой аффинностью. Негативная селекция элиминирует от 10 до 70% клеток, прошедших позитивную селекцию.

Тимоциты, связавшие какой-либо из комплексов MHC-пептид с правильной, т.е. средней по силе, аффинностью, получают сигнал к выживанию и продолжают дифференцировку.

.На короткое время с мембраны тимоцитов исчезают обе корецепторные молекулы, а затем экспрессируется одна из них: тимоциты, распознавшие пептид в комплексе с MHC-I, экспрессируют корецептор CD8, а с MHC-II - корецептор CD4. Соответственно на периферию выходят (в соотношении около 2:1) T-лимфоциты двух типов: CD8 + и CD4 + , функции которых в предстоящих иммунных ответах различны.

-CD8 + T-клетки играют роль цитотоксических T-лимфоцитов (ЦТЛ) - они распознают и непосредственно убивают клетки, модифицированные вирусом, опухолевые и другие «изменённые» клетки (рис. 6-6).

-CD4 + T-клетки. Функциональная специализация CD4 + T-лимфоцитов более разнообразна. Значительная часть CD4 + T-лимфоцитов в процессе развития иммунного ответа становится T-хелперами (помощниками), взаимодействующими с В-лимфоцитами, Т-лимфоцитами и другими клетками при

Рис. 6-6. Механизм воздействия цитотоксического T-лимфоцита на клеткумишень. В Т-киллере в ответ на увеличение концентрации Са 2+ гранулы с перфорином (фиолетовые овалы) и гранзимами (жёлтые кружочки) сливаются с клеточной мембраной. Освободившийся перфорин встраивается в мембрану клетки-мишени с последующим образованием пор, проницаемых для гранзимов, воды и ионов. В результате клетка-мишень лизируется

прямом контакте или через растворимые факторы (цитокины). В определённых случаях из них могут развиться CD4 + ЦТЛ: в частности, такие T-лимфоциты обнаружены в значительных количествах в коже больных с синдромом Лайелла.

Субпопуляции T-хелперов

С конца 80-х годов XX века было принято выделять 2 субпопуляции T-хелперов (в зависимости от того, какой набор цитокинов они продуцируют) - Th1 и Th2. В последние годы спектр субпопуляций CD4 + Т-клеток продолжает расширяться. Обнаружены такие субпопуляции, как: Th17, T-регуляторы, Tr1, Th3, Tfh и др.

Основные субпопуляции CD4 + Т-клеток:

. Th0 - CD4 + Т-лимфоциты на ранних стадиях развития иммунного ответа, они продуцируют только ИЛ-2 (митоген для всех лимфоцитов).

.Th1 - дифференцированная субпопуляция CD4 + Т-лимфоцитов, специализирующаяся на продукции ИФН γ, ФНО β и ИЛ-2. Эта субпопуляция осуществляет регуляцию многих реакций клеточного иммунитета, включая гиперчувствительность замедленного типа (ГЗТ) и активацию ЦТЛ. Кроме того, Th1 стимулируют продукцию В-лимфоцитами опсонизирующих антител класса IgG, запускающих каскад активации комплемента. Развитие избыточного воспаления с последующим повреждением тканей напрямую связано с активностью Th1-субпопуляции.

.Th2 - дифференцированная субпопуляция CD4 + Т-лимфоцитов, специализирующаяся на выработке ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-10 и ИЛ-13. Эта субпопуляция участвует в активации В-лимфоцитов и способствует секреции ими больших количеств антител разных классов, особенно IgE. Кроме того, Th2-субпопуляция участвует в активации эозинофилов и развитии аллергических реакций.

.Th17 - субпопуляция CD4 + Т-лимфоцитов, специализирующаяся на образовании ИЛ-17. Эти клетки осуществляют противогрибковую и антимикробную защиту эпителиальных и слизистых барьеров, а также играют ключевую роль в патологии аутоиммунных заболеваний.

.Т-регуляторы - CD4 + Т-лимфоциты, подавляющие активность других клеток иммунной системы посредством секреции иммуносупрессорных цитокинов - ИЛ-10 (ингибитора активности макрофагов и Th1-клеток) и ТФРβ - ингибитора пролиферации лимфоцитов. Ингибиторный эффект может также достигаться при непосредственном межклеточном взаимодействии, поскольку на мембране некоторых Т-регуляторов экспрессированы индукторы апоптоза активированных и «отработавших» лимфоцитов - FasL (Fas-лиганд). Существует несколько популяций CD4 + регуляторных Т-лимфоцитов: естественные (Treg), созревающие в тимусе (CD4 + CD25 + , экспрессируют фактор транскрипции Foxp3), и индуцированные - локализованные преимущественно в слизистых оболочках пищеварительного тракта и переключившиеся на образование ТФРβ (Th3) или ИЛ-10 (Tr1). Нормальное функционирование Т-регуляторов необходимо для поддержания гомеостаза иммунной системы и предотвращения развития аутоиммунных заболеваний.

.Дополнительные хелперные популяции. В последнее время появляется описание всё новых популяций CD4 + Т-лимфоцитов, клас-

сифицированных по типу преимущественно продуцируемого ими цитокина. Так, как оказалось, одной из важнейших популяций являются Tfh (от англ. follicular helper - фолликулярный хелпер). Эта популяция CD4 + Т-лимфоцитов преимущественно расположена в лимфоидных фолликулах и осуществляет хелперную функцию для В-лимфоцитов посредством продукции ИЛ-21, вызывая их созревание и терминальную дифференцировку в плазматические клетки. Кроме ИЛ-21 Tfh могут также продуцировать ИЛ-6 и ИЛ-10, необходимые для дифференцировки В-лимфоцитов. Нарушение функций этой популяции приводит к развитию аутоиммунных заболеваний или иммунодефицитов. Другой «новоявленной» популяцией являются Th9 - продуценты ИЛ-9. По-видимому, это Th2, переключившиеся на секрецию ИЛ-9, способного вызывать пролиферацию Т-хелперных клеток при отсутствии антигенной стимуляции, а также усиливать секрецию В-лимфоцитами IgM, IgG и IgE.

Основные субпопуляции Т-хелперов представлены на рис. 6-7. На рисунке суммированы современные представления об адаптивных субпопуляциях CD4 + Т-клеток, т.е. субпопуляций, формирующих-

Рис. 6-7. Адаптивные субпопуляции CD4 + Т-клеток (цитокины, дифференцировочные факторы, хемокиновые рецепторы)

ся при иммунном ответе, а не в ходе естественного развития клеток. Для всех разновидностей Т-хелперов указаны цитокины-индукторы (на стрелках, ведущих к кружкам, символизирующим клетки), транскрипционные факторы (внутри кружков), хемокиновые рецепторы, направляющие миграцию (около линий, отходящих от «поверхности клетки»), и продуцируемые цитокины (в прямоугольниках, на которые направлены стрелки, отходящие от кружков).

Расширение семейства адаптивных субпопуляций CD4 + Т-клеток потребовало решения вопроса о природе клеток, с которыми взаимодействуют эти субпопуляции (кому они оказывают «помощь» в соответствии со своей функцией хелперов). Эти представления отражены на рис. 6-8. Здесь же представлен уточнённый взгляд на функции этих субпопуляций (участие в защите от определённых групп патогенов), а также о патологических последствиях несбалансированного усиления активности этих клеток.

Рис. 6-8. Адаптивные субпопуляции Т-клеток (клетки-партнёры, физиологические и патологические эффекты)

γ δT-лимфоциты

Подавляющее большинство (99%) T-лимфоцитов, проходящих лимфопоэз в тимусе, составляют αβT-клетки; менее 1% - γδT-клетки. Последние в большинстве дифференцируются вне тимуса, в первую очередь в слизистых оболочках пищеварительного тракта. В коже, лёгких, пищеварительном и репродуктивном трактах они являются доминирующей субпопуляцией внутриэпителиальных лимфоцитов. Среди всех T-лимфоцитов организма γδT-клетки составляют от 10 до 50%. В эмбриогенезе γδT-клетки появляются раньше αβT-клеток.

.γδT-клетки не экспрессируют CD4. Молекула CD8 экспрессирована на части γδT-клеток, но не в виде ap-гетеродимера, как на CD8 + apT-клетках, а в виде гомодимера из двух a-цепей.

.Антигенраспознающие свойства: γδTCR в большей степени напоминают иммуноглобулины, чем αβTCR, т.е. способны связывать нативные антигены независимо от классических молекул MHC - для γδT-клеток не обязателен или вовсе не нужен предварительный процессинг антигена АПК.

.Разнообразие γδTCR меньше, чем αβTCR или иммуноглобулинов, хотя в целом γδT-клетки способны распознавать широкий спектр антигенов (в основном это фосфолипидные антигены микобактерий, углеводы, белки теплового шока).

.Функции γδT-клеток ещё до конца не изучены, хотя становится преобладающим мнение, что они служат одним из связующих компонентов между врождённым и приобретённым иммунитетом. γδT-клетки - один из первых барьеров на пути патогенов. Кроме того, эти клетки, секретируя цитокины, играют важную иммунорегуляторную роль и способны дифференцироваться в ЦТЛ.

NKT-лимфоциты

Естественные киллерные Т-клетки (NKT-клетки) представляют особую субпопуляцию лимфоцитов, занимающую промежуточное положение между клетками врождённого и адаптивного иммунитета. Эти клетки имеют черты как NK-, так и Т-лимфоцитов. NKT-клетки экспрессируют αβTCR и характерный для NK-клеток рецептор NK1.1, принадлежащий к суперсемье лектиновых гликопротеинов С-типа. Однако TCR-рецептор NKT-клеток имеет существенные отличия от TCR-рецептора обычных клеток. У мышей большинство NKTклеток экспрессирует инвариантный V-домен a-цепи, состоящий из

сегментов Vα14-Jα18, иногда обозначаемый как Jα281. У человека V-домен α-цепи состоит из сегментов Vα24-JαQ. У мышей α-цепь инвариантного TCR преимущественно комплексируется с Vβ8.2, у человека - с Vβ11. Из-за особенностей строения цепей TCR NKTклеток называют инвариантным - iTCR. Развитие NKT-клеток зависит от молекулы CD1d, которая имеет сходство с молекулами МНС-I. В отличие от классических молекул МНС-I, презентирующих Т-клеткам пептиды, CD1d презентирует Т-клеткам только гликолипиды. Хотя считается, что печень является местом развития NKT-клеток, имеются строгие доказательства роли тимуса в их развитии. NKT-клетки играют важную роль в регуляции иммунитета. У мышей и людей с различными аутоиммунными процессами функциональная активность NKT-клеток сильно нарушена. Полной картины значимости таких нарушений в патогенезе аутоиммунных процессов нет. При некоторых аутоиммунных процессах NKT-клетки могут играть супрессорную роль.

Помимо контроля аутоиммунных и аллергических реакций, NKTклетки участвуют в иммунном надзоре, вызывая при повышении функциональной активности отторжение опухолей. Велика их роль в противомикробной защите, особенно на ранних этапах развития инфекционного процесса. NKT-клетки вовлекаются в различные воспалительные инфекционные процессы, особенно при вирусных поражениях печени. В целом NKT-клетки - многофункциональная популяция лимфоцитов, несущая ещё много научных загадок.

На рис. 6-9 обобщены данные о дифференцировке Т-лимфоцитов на функциональные субпопуляции. Представлены несколько уровней бифуркации: γ δТ/ αβТ, далее для αβТ-клеток - NKT/ остальные Т-лимфоциты, для последних - CD4 + /CD8 + , для CD4 + Т-клеток - Th/Treg, для CD8 + Т-лимфоцитов - CD8αβ/CD8αα. Показаны также дифференцировочные транскрипционные факторы, ответственные за все линии развития.

Рис. 6-9. Естественные субпопуляции Т-лимфоцитов и их дифференцировочные факторы

Хотя при исследовании под микроскопом большинство лимфоцитов в нормальной лимфоидной ткани выглядят одинаковыми, эти клетки подразделяют на две основные популяции. Одна популяция - Т-лимфоциты - ответственна за формирование активированных лимфоцитов, обеспечивающих клеточно-опосредованный иммунитет. Другая популяция - В-лимфоциты - ответственна за формирование антител, обеспечивающих гуморальный иммунитет.

Оба типа лимфоцитов образуются у эмбриона из полипотентных гемопоэтических стволовых клеток, формирующих лимфоциты как один из наиболее важных результатов их дифференцировки. Почти все сформированные лимфоциты в результате заселяют лимфоидную ткань, однако прежде чем это произойдет, они дополнительно дифференцируются или проходят предварительную обработку.

Лимфоциты , которые в итоге станут активированными Т-лимфоцитами, сначала мигрируют к тимусу, где подвергаются предварительной обработке. Эти ответственные за клеточно-опо-средованный иммунитет лимфоциты называют Т-лимфоцитами, что подчеркивает роль тимуса.

Другая популяция лимфоцитов , В-лимфоциты, предназначенные для формирования антител, проходят предварительную обработку в печени плода в середине периода внутриутробной жизни, а также в костном мозге в конце внутриутробной жизни плода и после рождения. Эта популяция клеток впервые была открыта у птиц, имеющих специальный орган для их предварительной обработки, который называют бурсой Фабриция (фабрициевой сумкой). Ответственные за гуморальный иммунитет лимфоциты называют В-лимфоцитами, что подчеркивает роль бурсы. На рисунке показаны две лимфоцитарные системы для формирования: (1) активированных Т-лимфоцитов; (2) антител.

Предварительная обработка Т- и В-лимфоцитов

Все лимфоциты организма происходят от коммитированных в лимфоцитарном направлении стволовых клеток эмбриона, но эти клетки не могут непосредственно превратиться в активированные Т-лимфоциты или антитела. Прежде чем это станет возможным, клетки должны подвергнуться дальнейшей дифференцировке в соответствующих областях, где они проходят специфическую обработку.

Т-лимфоциты проходят предварительную обработку в тимусе (вилочковой железе). После образования в костном мозге Т-лимфоциты сначала мигрируют к вилочковой железе. Здесь они быстро делятся, одновременно становясь чрезвычайно разнообразными, т.е. предназначенными для реакции против разных специфических антигенов. Это значит, что один лимфоцит, обработанный в тимусе, проявляет специфическую реактивность в отношении одного антигена. Следующий лимфоцит специфически реагирует на другой антиген. Это продолжается до тех пор, пока в тимусе не появятся тысячи разных типов лимфоцитов со специфической реактивностью в отношении тысяч разных антигенов. Эти разные типы предварительно обработанных Т-лимфоцитов оставляют тимус и распространяются кровью по всему телу, временно оседая в лимфоидной ткани.

Кроме того, благодаря обработке в тимусе любой оставляющий его Т-лимфоцит не реагирует с белками или другими антигенами собственных тканей организма (иначе Т-лимфоциты погубили бы собственное тело человека в течение всего нескольких дней). Тимус выбирает, какие Т-лимфоциты могут его покинуть, сначала смешивая их практически со всеми специфическими аутоантигенами собственных тканей тела. Если Т-лимфоцит реагирует, он разрушается и фагоцитируется, вместо того, чтобы выделяться. Это происходит с основной частью клеток (вплоть до 90%). Таким образом, клетки, выделяющиеся из тимуса, не реагируют против собственных антигенов тела; они реагируют лишь на антигены внешних источников, например бактерий, токсинов или тканей, пересаженных от другого человека.

Основная часть предобработки Т-лимфоцитов в тимусе происходит перед рождением ребенка и в течение нескольких месяцев после рождения. Удаление вилочковой железы после этого периода ослабляет (но не исключает) Т-лимфоцитарную иммунную систему. Однако удаление тимуса за несколько месяцев до рождения может нарушить развитие всего клеточно-опосредован-ного иммунитета. Поскольку именно клеточный тип иммунитета в основном отвечает за отторжение трансплантированных органов, например сердца или почек, органы можно пересаживать с меньшей вероятностью отторжения, если у животного в соответствующее время до его рождения удалить тимус.

В-лимфоциты проходят предварительную обработку в печени и костном мозге. О деталях предварительной обработки В-лимфоцитов известно гораздо меньше, чем о предобработке Т-лимфоцитов. Известно, что у человека предварительная обработка В-лимфоцитов осуществляется в печени в середине внутриутробного периода развития, а также в костном мозге в конце внутриутробного периода и после рождения.

Существуют два важных различия между В- и Т-лимфоцитами . Во-первых, В-лимфоциты активно секретируют реактивные агенты, называемые антителами, в отличие от Т-лимфоцитов, реагирующих с антигеном непосредственно. Антитела - это крупные белковые молекулы, способные соединяться с антигенной субстанцией и разрушать ее. Во-вторых, разнообразие В-лимфоцитов выражено больше, чем у Т-лимфоцитов, т.е. формируются миллионы типов В-лимфоцитарных антител с разными специфическими реактивностями. После предобработки В-лимфоциты, как и Т-лимфоциты, мигрируют к лимфоидной ткани по всему телу, где временно располагаются рядом, но несколько обособленно от областей локализации Т-лимфоцитов.