Фотосинтез. Общее уравнение фотосинтеза

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

6СО 2 + 6Н 2 О + Qсвета → С 6 Н 12 О 6 + 6О 2 .

Фотосинтез – процесс, при котором происходит поглощение электромагнитной энергии солнца хлорофиллом и вспомогательными пигментами и превращение её в химическую энергию, поглощение углекислого газа из атмосферы, восстановление его в органические соединения и возвращение кислорода в атмосферу.

В процессе фотосинтеза из простых неорганических соединений (СО 2 , Н 2 О) строятся различные органические соединения. В результате происходит перестройка химических связей: вместо связей С – О и Н – О возникают связи C – C и C – H, в которых электроны занимают более высокий энергетический уровень. Таким образом, богатые энергией органические вещества, которыми питаются и за счет которых получают энергию (в процессе дыхания) животные и человек, первоначально создаются в зеленом листе. Можно сказать, что практически вся живая материя на Земле является результатом фотосинтетической деятельности.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С0 2 , из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, - это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Фотосинтез включает как световые, так и темновые реакции. Был проведен ряд экспериментов, доказывающих, что в процессе фотосинтеза происходят не только реакции, идущие с использованием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующие доказательства существования темновых реакций в процессе фотосинтеза:

1) фотосинтез ускоряется с повышением температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Особенно резко зависимость фотосинтеза от температуры проявляется при высоких интенсивностях света. По-видимому, в этом случае скорость фотосинтеза лимитируется именно темновыми реакциями;

2) эффективность использования энергии света в процессе фотосинтеза оказалась выше при прерывистом освещении. При этом для более эффективного использования энергии света длительность темновых промежутков должна значительно превышать длительность световых.

Пигменты фотосинтеза

Для того чтобы свет мог оказывать влияние на растительный организм и, в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами-пигментами. Пигменты - это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными.

Пигменты, сконцентрированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины .

К группе хлорофиллов относят органические соединения, которые содержат 4 пиррольных кольца, соединённых атомами магния и имеющие зелёную окраску.

В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших растений содержатся хлорофиллы а и b. Хлорофилл с обнаружен в диатомовых водорослях, хлорофилл d - в красных водорослях.

Основными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофиллы для бактерий. Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего русского ботаника М.С. Цвета (1872-1919). Он разработал новый хроматографический метод разделения веществ и выделил пигменты листа в чистом виде.

Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкое применение. М.С. Цвет пропускал вытяжку из листа через стеклянную трубку, заполненную порошком - мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдельные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат хлорофилл а и хлорофилл b, а также каротиноиды (каротин, ксантофилл и др.). Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хорошо растворимы в органических растворителях. Хлорофиллы а и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, а хлорофилл b - желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом b.

Каротиноиды - это желтые и оранжевые пигменты алифатического строения, производные изопрена. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротинойды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента - каротин (оранжевый) и ксантофилл (желтый). В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплексов с белками. Каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются.

Фикобилины - красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Исследования показали, что красные водоросли и цианобактерий наряду с хлорофиллом а содержат фикобилины. В основе химического строения фикобилинов лежат четыре пиррольные группировки.

Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин - это окисленный фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). Связь между фикобилинами и белками разрушается только кислотой.

Фикобилины поглощают лучи в зеленой и желтой частях солнечного спектра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495- 565 нм, а фикоцианин - 550- 615 нм. Сравнение спектров поглощения фикобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления организмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация). Как известно, красные лучи, соответствующие основной линии поглощения хлорофилла, поглощаются, проходя через толщу воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами.

Свойства хлорофилла

Все хлорофиллы являются магниевыми солями пиррола. В центре молекулы хлорофилла находятся магний и четыре пиррольных кольца, соединенные друг с другом метановыми мостиками.

По химическому строению хлорофиллы - сложные эфиры дикарбоновой органической кислоты - хлорофиллина и двух остатков спиртов - фитола и метилового.

Важнейшей частью молекулы хлорофилла является центральное ядро. Оно состоит из четырех пиррольных пятичленных колец, соединенных между собой углеродными мостиками и образующих большое порфириновое ядро с атомами азота посередине, связанными с атомом магния. В молекуле хлорофилла есть дополнительное циклопентаноновое кольцо, которое содержит карбонильную, а также карбоксильную группы, связанные эфирной связью с метиловым спиртом. Наличие в порфириновом ядре конъюгированной по кругу системы десяти двойных связей и магния обусловливает характерный для хлорофилла зеленый цвет.

Хлорофилл в отличается от хлорофилла а только тем, что вместо метальной группы во втором пиррольном кольце имеет альдегидную группу СОН. Хлорофилла имеет сине-зеленую окраску, а хлорофилл в -- светло-зеленую. Адсорбируются они в разных слоях хроматограммы, что свидетельствует о разных химических и физических свойствах. По современным представлениям, биосинтез хлорофилла в идет через хлорофилл а.

Флуоресценция - это свойство многих тел под влиянием падающего света, в свою очередь, излучать свет: при этом длина волны излучаемого света обычно больше длины - волны возбуждающего света. Одним из важнейших свойств хлорофиллов является их ярко выраженная способность к флуоресценции, которая интенсивна в растворе и угнетена в хлорофилле, содержащемся в тканях листьев, в пластидах. Если смотреть на раствор хлорофилла в лучах света, проходящего через него, то он кажется изумрудно-зеленым, если же рассматривать его в лучах отраженного света, то он приобретает красную окраску - это явление флуоресценции.

Хлорофиллы различаются по спектрам поглощения, при этом у хлорофилла b по сравнению с хлорофиллом а полоса поглощения в красной области спектра несколько смещена в сторону коротковолновых лучей, а в сине-фиолетовой области максимум поглощения смещен в сторону длинноволновых (красных) лучей.


Похожая информация.



























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Задачи: Сформировать знания о реакциях пластического и энергетического обменов и их взаимосвязи; вспомнить особенности строения хлоропластов. Дать характеристику световой и темновой фазы фотосинтеза. Показать значение фотосинтеза как процесса, обеспечивающего синтез органических веществ, поглощение углекислого газа и выделение кислорода в атмосферу.

Тип урока: лекция.

Оборудование:

  1. Средства наглядности: таблицы по общей биологии;
  2. ТСО: компьютер; мультимедиапроектор.

План лекции:

  1. История изучения процесса.
  2. Эксперименты по фотосинтезу.
  3. Фотосинтез, как анаболический процесс.
  4. Хлорофилл и его свойства.
  5. Фотосистемы.
  6. Световая фаза фотосинтеза.
  7. Темновая фаза фотосинтеза.
  8. Лимитирующие факторы фотосинтеза.

Ход лекции

История изучения фотосинтеза

1630 год начало изучения фотосинтеза. Ван Гельмонт доказал, что растения образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей и ивой, и отдельно само дерево, он показал, что через 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Он решил, что пищу дерево получает из воды. В настоящее время мы знаем, что используется углекислый газ.

В 1804 году Соссюр установил, что в процессе фотосинтеза велико значение воды.

В 1887 году открыты хемосинтезирующие бактерии.

В 1905 году Блэкман установил, что фотосинтез состоит из двух фаз: быстрой – световой и ряда последовательных медленных реакций темновой фазы.

Эксперименты по фотосинтезу

1 опыт доказывает значение солнечного света (рис. 1.) 2 опыт доказывает значение углекислого газа для фотосинтеза (рис. 2.)

3 опыт доказывает значение фотосинтеза (рис.3.)

Фотосинтез, как анаболический процесс

  1. Ежегодно в результате фотосинтеза образуется 150 млрд. тонн органического вещества и 200 млрд. тонн свободного кислорода.
  2. Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез. Поддерживает современный состав атмосферы, необходимый для существования современных форм жизни.
  3. Фотосинтез препятствует увеличению концентрации углекислого газа, предотвращая перегрев Земли вследствие парникового эффекта.
  4. Фотосинтез – основа всех цепей питания на Земле.
  5. Запасенная в продуктах энергия – основной источник энергии для человечества.

Сущность фотосинтеза заключается в превращении световой энергии солнечного луча в химическую энергию в виде АТФ и НАДФ·Н 2 .

Суммарное уравнение фотосинтеза:

6СО 2 + 6Н 2 О С 6 Н 12 О 6 + 6О 2

Существует два главных типа фотосинтеза:

Хлорофилл и его свойства

Виды хлорофилла

Хлорофилл имеет модификации а, в, с, d. Отличаются они структурным строением и спектром поглощения света. Например: хлорофилл в содержит на один атом кислорода больше и на два атома водорода меньше, чем хлорофилл а.

Все растения и оксифотобактерии имеют как основной пигмент желто-зеленый хлорофилл а, а как дополнительный хлорофилл в.

Другие пигменты растений

Некоторые другие пигменты способны поглощать солнечную энергию и передавать ее в хлорофилл, вовлекая ее тем самым в фотосинтез.

У большинства растений есть темно оранжевый пигмент – каротин , который в животном организме превращается в витамин А и желтый пигмент – ксантофилл .

Фикоцианин и фикоэритрин – содержат красные и сине-зеленые водоросли. У красных водорослей эти пигменты принимают более активное участие в процессе фотосинтеза, чем хлорофилл.

Хлорофилл минимально поглощает свет в сине-зеленой части спектра. Хлорофилл а, в- в фиолетовой области спектра, где длина волны 440 нм. Уникальная функция хлорофилла состоит в том, что он интенсивно поглощает солнечную энергию и передает ее другим молекулам.

Пигменты поглощают определенную длину волны, не поглощенные участки солнечного спектра отражаются, что обеспечивает окраску пигмента. Зеленый свет не поглощается, поэтому хлорофилл зеленый.

Пигменты – это химические соединения, которые поглощают видимый свет, что приводит электроны в возбужденное состояние. Чем меньше длина волны, тем больше энергия света и больше его способность переводить электроны в возбужденное состояние. Это состояние неустойчиво и вскоре вся молекула возвращается в свое обычное низкоэнергетическое состояние теряя при этом энергию возбуждения. Эта энергия может быть использована на флуоресценцию.

Фотосистемы

Пигменты растений участвующие в фотосинтезе «упакованы» в тилакоиды хлоропластов в виде функциональных фотосинтетических единиц – фотосинтетических систем: фотосистемы I и фотосистемы II.

Каждая система состоит из набора вспомогательных пигментов (от 250 до 400 молекул), передающих энергию на одну молекулу главного пигмента и она называется реакционным центром . В нем энергия Солнца используется для фотохимических реакций.

Световая фаза идет обязательно с участием света, темновая фаза и на свету и в темноте. Световой процесс происходит в тилакоидах хлоропластов, темновой – в строме, т.е. эти процессы пространственно разобщены.

Световая фаза фотосинтеза

В 1958 году Арнон и его сотрудники изучили световую фазу фотосинтеза. Они установили, что источником энергии при фотосинтезе является свет, а так как на свету в хлорофилле происходит синтез из АДФ+Ф.к. → АТФ, то этот процесс называется фосфорилированием. Оно сопряжено с переносом электронов в мембранах.

Роль световых реакций: 1. Синтез АТФ – фосфорилирование. 2. Синтез НАДФ.Н 2 .

Путь переноса электронов называется Z-схемой.

Z-схема. Нециклическое и циклическое фотофосфорилирование (рис. 6.)



В ходе циклического транспорта электронов не происходит образования НАДФ.Н 2 и фоторазложения Н 2 О, следовательно и выделение О 2 . Этот путь используется тогда, когда в клетке избыток НАДФ.Н 2 , но требуется дополнительная АТФ.

Все эти процессы относятся к световой фазе фотосинтеза. В дальнейшем энергия АТФ и НАДФ.Н 2 используется для синтеза глюкозы. Для этого процесса свет не нужен. Это реакции темновой фазы фотосинтеза.

Темновая фаза фотосинтеза или цикл Кальвина

Синтез глюкозы происходит в ходе циклического процесса, который получил название по имени ученого Мельвина Кальвина, открывшего его, и награжденного Нобелевской премией.


Рис. 8. Цикл Кальвина

Каждая реакция цикла Кальвина осуществляется своим ферментом. Для образования глюкозы используются: СО 2 , протоны и электроны от НАДФ.Н 2 , энергия АТФ и НАДФ.Н 2 . Происходит процесс в строме хлоропласта. Исходным и конечным соединением цикла Кальвина, к которому с помощью фермента рибулозодифосфаткарбоксилазы присоединяется СО2, является пятиуглеродный сахар – рибулозобифосфат , содержащий две фосфатные группы. В результате образуется шестиуглеродное соединение, сразу же распадающееся на две трехуглеродные молекулы фосфоглицериновой кислоты , которые затем восстанавливаются до фосфоглицеринового альдегида . При этом, часть образовавшегося фосфоглицеринового альдегида используется для регенерации рибулозобифосфата, и, таким образом, цикл возобновляется снова (5С 3 → 3С 5), а часть используется для синтеза глюкозы и других органических соединений (2С 3 → С 6 → С 6 Н 12 О 6).

Для образования одной молекулы глюкозы необходимо 6 оборотов цикла и требуется 12НАДФ.Н 2 и 18 АТФ. Из суммарного уравнения реакции получается:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

Из приведенного уравнения видно, что атомы С и О вошли в глюкозу из СО 2 , а атомы водорода из Н 2 О. Глюкоза в дальнейшем может быть использована как на синтез сложных углеводов (целлюлозы, крахмала), так и на образование белков и липидов.

(С 4 – фотосинтез. В 1965 году было доказано, что у сахарного тростника – первыми продуктами фотосинтеза, являются кислоты, содержащие четыре атома углерода (яблочная, щавелевоуксусная, аспарагиновая). К С 4 растениям принадлежат кукуруза, сорго, просо).

Лимитирующие факторы фотосинтеза

Скорость фотосинтеза – наиболее важный фактор влияющий на урожайность с/х культур. Так, для темновых фаз фотосинтеза нужны НАДФ.Н 2 и АТФ, и поэтому скорость темновых реакций зависит от световых реакций. При слабой освещенности скорость образования органических веществ будет мала. Поэтому свет – лимитирующий фактор.

Из всех факторов одновременно влияющих на процесс фотосинтеза лимитирующим будет тот, который ближе к минимальному уровню. Это установил Блэкман в 1905 году . Разные факторы могут быть лимитными, но один из них главный.


Космическая роль растений (описана К. А. Тимирязевым ) заключается в том, что растения – единственные организмы, усваивающие солнечную энергию и аккумулирующие ее в виде потенциальной химической энергии органических соединений . Выделяющийся О 2 поддерживает жизнедеятельность всех аэробных организмов. Из кислорода образуется озон, который защищает все живое от ультрафиолетовых лучей. Растения использовали из атмосферы громадное количество СО 2 , избыток которого создавал «парниковый эффект», и температура планеты понизилась до нынешних значений.

— синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО 2 + 6Н 2 О + Q света → С 6 Н 12 О 6 + 6О 2 .

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d ), главным является хлорофилл a . В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы . У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы .

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н 2 О + Q света → Н + + ОН — .

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы.ОН:

ОН — → .ОН + е — .

Радикалы.ОН объединяются, образуя воду и свободный кислород:

4НО. → 2Н 2 О + О 2 .

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н 2:

2Н + + 2е — + НАДФ → НАДФ·Н 2 .

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н 2 ; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н 2 , образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО 2 + 24Н + + АТФ → С 6 Н 12 О 6 + 6Н 2 О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С 3 - и С 4 -фотосинтез.

С 3 -фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С 3) соединения. С 3 -фотосинтез был открыт раньше С 4 -фотосинтеза (М. Кальвин). Именно С 3 -фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С 3 -фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О 2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО 2 . В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО 2 . Фотодыхание приводит к понижению урожайности С 3 -растений на 30-40% (С 3 -растения — растения, для которых характерен С 3 -фотосинтез).

С 4 -фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С 4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С 4 -растениями . В 1966 году австралийские ученые Хэтч и Слэк показали, что у С 4 -растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С 4 -растениях стали называть путем Хэтча-Слэка .

Для С 4 -растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой . В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО 2 и, самое главное, не взаимодействует с О 2 . В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО 2 и НАДФ·Н 2 .

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО 2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С 3 -фотосинтезе.

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом . К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH 3 → HNO 2 → HNO 3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H 2 S + ½O 2 → S + H 2 O, H 2 S + 2O 2 → H 2 SO 4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

    Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

    Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

Как объяснить такой сложный процесс, как фотосинтез, кратко и понятно? Растения являются единственными живыми организмами, которые могут производить свои собственные продукты питания. Как они это делают? Для роста и получают все необходимые вещества из окружающей среды: углекислый газ - из воздуха, воду и - из почвы. Также они нуждаются в энергии, которую получают из солнечных лучей. Эта энергия запускает определенные химические реакции, во время которых углекислый газ и вода превращаются в глюкозу (питание) и и есть фотосинтез. Кратко и понятно суть процесса можно объяснить даже детям школьного возраста.

"Вместе со светом"

Слово "фотосинтез" происходит от двух греческих слов - "фото" и "синтез", сочетание который в переводе означает "вместе со светом". В солнечная энергия преобразуется в химическую энергию. Химическое уравнение фотосинтеза:

6CO 2 + 12H 2 O + свет = С 6 Н 12 О 6 + 6O 2 + 6Н 2 О.

Это означает, что 6 молекул углекислого газа и двенадцать молекул воды используются (вместе с солнечным светом) для производства глюкозы, в итоге образуются шесть молекул кислорода и шесть молекул воды. Если изобразить это в виде словесного уравнения, то получится следующее:

Вода + солнце => глюкоза + кислород + вода.

Солнце является очень мощным источником энергии. Люди всегда стараются использовать его для выработки электричества, утепления домов, нагревания воды и так далее. Растения "придумали", как использовать солнечную энергию еще миллионы лет назад, потому что это было нужно для их выживания. Фотосинтез кратко и понятно можно объяснить таким образом: растения используют световую энергию солнца и преобразуют ее в химическую энергию, результатом которой является сахар (глюкоза), избыток которого хранится в виде крахмала в листьях, корнях, стеблях и семенах растения. Энергия солнца передается растениям, а также животным, которые эти растения едят. Когда растение нуждается в питательных веществах для роста и других жизненных процессов, эти запасы оказываются очень полезными.

Как растения поглощают энергию солнца?

Рассказывая про фотосинтез кратко и понятно, стоит затронуть вопрос о том, каким образом растениям удается поглощать солнечную энергию. Это происходит благодаря особой структуре листьев, включающей в себя зеленые клетки - хлоропласты, которые содержат специальное вещество под названием хлорофилл. Это который придает листьям зеленый цвет и отвечает за поглощение энергии солнечного света.


Почему большинство листьев широкие и плоские?

Фотосинтез происходит в листьях растений. Удивительным фактом является то, что растения очень хорошо приспособлены для улавливания солнечного света и поглощения углекислого газа. Благодаря широкой поверхности будет захватываться гораздо больше света. Именно по этой причине солнечные панели, которые иногда устанавливают на крышах домов, также широкие и плоские. Чем больше поверхность, тем лучше происходит поглощение.

Что еще важно для растений?

Как и люди, растения также нуждаются в полезных и питательных веществах, чтобы сохранить здоровье, расти и выполнять хорошо свои жизненные функции. Они получают растворенные в воде минеральные вещества из почвы через корни. Если в почве не хватает минеральных питательных веществ, растение не будет развиваться нормально. Фермеры часто проверяют почву для того, чтобы убедиться, что в ней имеется достаточное количество питательных веществ для роста культур. В противном случае прибегают к использованию удобрений, содержащих основные минералы для питания и роста растений.

Почему фотосинтез так важен?

Объясняя фотосинтез кратко и понятно для детей, стоит рассказать, что этот процесс является одной из наиболее важных химических реакций в мире. Какие существуют причины для такого громкого утверждения? Во-первых, фотосинтез кормит растения, которые, в свою очередь, кормят всех остальных живых существ на планете, включая животных и человека. Во-вторых, в результате фотосинтеза в атмосферу выделяется необходимый для дыхания кислород. Все живые существа вдыхают кислород и выдыхают углекислый газ. К счастью, растения делают все наоборот, поэтому они очень важны для человека и животных, так как дают им возможность дышать.

Удивительный процесс

Растения, оказывается, тоже умеют дышать, но, в отличие от людей и животных, они поглощают из воздуха углекислый газ, а не кислород. Растения тоже пьют. Вот почему нужно поливать их, иначе они умрут. При помощи корневой системы вода и питательные вещества транспортируются во все части растительного организма, а через маленькие отверстия на листиках происходит поглощение углекислого газа. Пусковым механизмом для запуска химической реакции является солнечный свет. Все полученные продукты обмена используются растениями для питания, кислород выделяется в атмосферу. Вот так можно объяснить кратко и понятно, как происходит процесс фотосинтеза.

Фотосинтез: световая и темновая фазы фотосинтеза

Рассматриваемый процесс состоит из двух основных частей. Существуют две фазы фотосинтеза (описание и таблица - далее по тексту). Первая называется световой фазой. Она происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента АТФ-синтетазы. Что еще скрывает фотосинтез? Световая и сменяют друг друга по мере наступления дня и ночи (циклы Кальвина). Во время темновой фазы происходит производство той самой глюкозы, пищи для растений. Этот процесс называют еще независимой от света реакцией.

Световая фаза Темновая фаза

1. Реакции, происходящие в хлоропластах, возможны только при наличии света. В этих реакциях энергия света преобразуется в химическую энергию

2. Хлорофилл и другие пигменты поглощают энергию от солнечного света. Эта энергия передается на фотосистемы, ответственные за фотосинтез

3. Вода используется для электронов и ионов водорода, а также участвует в производстве кислорода

4. Электроны и ионы водорода используются для создания АТФ (молекула накопления энергии), которая нужна в следующей фазе фотосинтеза

1. Реакции внесветового цикла протекают в строме хлоропластов

2. Углекислый газ и энергия от АТФ используются в виде глюкозы

Заключение

Из всего вышесказанного можно сделать следующие выводы:

  • Фотосинтез - это процесс, который позволяет получать энергию от солнца.
  • Световая энергия солнца преобразуется в химическую энергию хлорофиллом.
  • Хлорофилл придает растениям зеленый цвет.
  • Фотосинтез происходит в хлоропластах клеток листьев растений.
  • Углекислый газ и вода необходимы для фотосинтеза.
  • Углекислый газ поступает в растение через крошечные отверстия, устьица, через них же выходит кислород.
  • Вода впитывается в растение через его корни.
  • Без фотосинтеза в мире не было бы еды.
Фотосинтез

Фотосинез – это процесс
трансформации
поглощенной организмом
энергии света в
химическую энергию
органических
(неорганических)
соединений.
Главная роль восстановление СО2 до
уровня углеводов с
использованием энергии
света.

Развитие учения о фотосинтезе

Климе́нт Арка́дьевич Тимиря́зев
(22 мая (3 июня) 1843, Петербург- 28
апреля 1920, Москва) Научные труды
Тимирязева, посвящены вопросу о
разложении атмосферной углекислоты
зелёными растениями под влиянием
солнечной энергии. Изучение состава и
оптических свойств зелёного пигмента
растений (хлорофилла), его генезиса,
физических и химических условий
разложения углекислоты, определение
составных частей солнечного луча,
принимающих участие в этом явлении,
изучение количественного отношения
между поглощенной энергией и
произведённой работой.

Джозеф Пристли (13 марта
1733-6 февраля 1804) -
британский священникдиссентер, естествоиспытатель,
философ, общественный деятель.
Вошёл в историю прежде всего
как выдающийся химик,
открывший кислород и
углекислый газ

Пьер Жозеф Пельтье - (22 марта 1788 - 19 июля
1842) - французский химик и фармацевт, один из
основателей химии алкалоидов.
В 1817 году, вместе с Жозеф Бьенеме Каванту, он
выделил зелёный пигмент из листьев растений, который
они назвали хлорофиллом.

Алексей Николаевич Бах
(5 (17) марта 1857 - 13 мая,
1946) - советский биохимик и
физиолог растений. Высказал
мысль о том, что ассимиляция СО2
при фотосинтезе является
сопряженным окислительновосстановительным процессом,
происходящим за счет водорода и
гидроксила воды, причем кислород
выделяется из воды через
промежуточные перекисные
соединения.

Общее уравнение фотосинтеза

6 СО2 + 12 Н2О
С6Н12О6 + 6 О2 + 6 Н2О

У высших растений фотосинтез осуществляется в
специализированных клетках органоидов листьев –
хлоропластах.
Хлоропласты – это округлые, или дискообразные
тельца длиной 1-10 мкм, толщиной до 3 мкм. Содержание
их в клетках от 20 до 100.
Химический состав (% на сухую массу):
Белок - 35-55
Липиды – 20-30
Углеводы – 10
РНК – 2-3
ДНК – до 0,5
Хлорофилл – 9
Каротиноиды – 4,5

Строение Хлоропласта

10. Происхождение хлоропластов

Виды формирования хлоропластов:
Деление
Почкование
Ядерный путь
темнота
ядро
инициальная
частица
свет
проламиллярное
тело
пропластида
хлоропласт
схема ядерного пути

11. Онтогенез хлоропластов

12.

Хлоропласты - зелёные пластиды, которые
встречаются в клетках растений и водорослей.
Ультраструктура хлоропласта:
1. наружняя мембрана
2. межмембранное
пространство
3. внутренняя мембрана
(1+2+3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламела)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. плстоглобула (капля жира)

13. Пигменты фотосинтезирующих растений

хлорофиллы
фикобилины
Фикобилины
каротиноиды
флавоноидные
пигменты

14. Хлорофиллы

Хлорофи́лл -
зелёный пигмент,
обусловливающий
окраску хлоропластов
растений в зелёный
цвет. По химическому
строению
хлорофиллы -
магниевые комплексы
различных
тетрапирролов.
Хлорофиллы имеют
порфириновое
строение.

15.

Хлорофиллы
Хлорофилл «а»
(сине-зеленые
бактерии)
Хлорофилл «c»
(бурые водоросли)
Хлорофилл «b»
(высшие растения,
зеленые, харовые
водоросли)
Хлорофилл «d»
(красные водоросли)

16. Фикобилины

Фикобилины – это
пигменты,
представляющие собой
вспомогательные
фотосинтетические
пигменты, которые могут
передавать энергию
поглощенных квантов
света на хлорофилл,
расширяя спектр действия
фотосинтеза.
Открытые тетрапиррольные
структуры.
Встречаются у водорослей.

17. Каротиноиды

Структурная формула

18.

Каротиноиды – это
жирорастворимые
пигменты желтого,
красного и оранжевого
цвета. Придают
окраску большинству
оранжевых овощей и
фруктов.

19. Группы каротиноидов:

Каротины - жёлтооранжевый пигмент,
непредельный углеводород
из группы каротиноидов.
Формула С40H56. Нерастворим
в воде, но растворяется в
органических растворителях.
Содержится в листьях всех растений, а также в
корне моркови, плодах шиповника и др. Является
провитамином витамина А.
2.
Ксантофиллы - растительный пигмент,
кристаллизуется в призматических кристаллах
жёлтого цвета.
1.

20. Флавоноидные пигменты

Флавоноиды -это группа
водорастворимых природных
фенольных соединений.
Представляют собой
гетероциклические
кислородсодержащие
соединения преимущественно
желтого, оранжевого, красного
цвета. Они принадлежат к
соединениям С6-С3-С6 ряда -
в их молекулах имеются два
бензольных ядра, соединенных
друг с другом трехуглеродным
фрагментом.
Структура флавонов

21. Флавоноидные пигменты:

Антоцианы - природные вещества, красящие растения;
относятся к гликозидам.
Флавоны и флавонолы. Играют роль поглотителей УФлучей тем самым предохраняют хлорофилл и цитоплазму
от разрушения.

22. Стадии фотосинтеза

световая
Осуществляется в
гранах хлоропластов.
Протекает при наличии
света Быстрые < 10 (-5)
сек
темновая
Осуществляется в
бесцветной белковой строме
хлоропластов.
Для протекания свет
необязателен
Медленные ~ 10 (-2) сек

23.

24.

25. Световая стадия фотосинтеза

В ходе световой стадии фотосинтеза образуются
высокоэнергетические продукты: АТФ, служащий в
клетке источником энергии, и НАДФН, использующийся
как восстановитель. В качестве побочного продукта
выделяется кислород.
Общее уравнение:
АДФ + Н3РО4 + Н2О + НАДФ
АТФ + НАДФН + 1/2О2

26.

Спектры поглощения
ФАР: 380 – 710 нм
Каротиноиды: 400550 нм главный
максимум: 480 нм
Хлорофиллы:
в красной области спектра
640-700 нм
в синей - 400-450 нм

27. Уровни возбуждения хлорофилла

1 уровень. Связан с переходом на более высокий
энергетический уровень электронов в системе
сопряжения двух связей
2 уровень. Связан с возбуждением неспаренных электронов
четырех атомов азота и кислорода в порфириновом
кольце.

28. Пигментные системы

Фотосистема I
Состоит из 200 молекул
хлорофилла «а»,50
молекул кароиноидов и 1
молекулы пигмента
(Р700)
Фотосистема II
Состоит из 200 молекул
хлорофилла «а670», 200
молекул хлорофилла «b» и
одной молекулы пигмента
(Р680)

29. Локализация электрон и протон транспортных реакций в тилакоидной мембране

30. Нециклическое фотосинтетическое фосфорилирование (Z – схема, или схема Говинджи)

x
е
Фg е
Фф е
НАДФ
Пх
е
FeS
е
АДФ
Цит b6
е
II ФС
НАДФН
АТФ
е
I ФС
Цит f
е
е
Пц
е
Р680
hV
О2
е
Н2 О
Р700
hV
Фф – феофетин
Пx – пластохинон
FeS – железосерный белок
Цит b6 – цитохром
Пц – пластоционин
Фg – феродоксин
х – неизвестное прир.
соединение

31. Фотосинтетическое фосфорилирование

Фотосинтетическое фосфорилирование – это процесс
образования энергии АТФ и НАДФН при фотосинтезе с
использованием квантов света.
Виды:
нециклическое (Z-схема).Принимают участие две
пигментные системы.
циклическое. Принимает участие фотосистема I.
псевдоциклическое. Идет по типу нециклического, но не
наблюдается видимого выделения кислорода.

32. Циклическое фотосинтетическое фосфорилирование

е
АДФ
Фg
е
АТФ
Цитb6
е
e
Цитf
е
P700
hV
е
АДФ
АТФ
Цит b6 – цитохром
Фg – феродоксин

33. Циклический и нециклический транспорт электронов в хлоропластах

34.

Химизм фотосинтеза
Фотосинтез
осуществляется
путем
последовательного чередования двух фаз:
световой,
протекающей
с
большой
скоростью и не зависящей от температуры;
темновой, названной так потому, что для
происходящих в этой фазе реакций
световая энергия не требуется.

35. Темновая стадия фотосинтеза

В темновой стадии с участием АТФ и НАДФН
происходит восстановление CO2 до глюкозы (C6H12O6).
Хотя свет не требуется для осуществления данного
процесса, он участвует в его регуляции.

36. С3-фотосинтез, цикл Кальвина

Цикл Кальвина или восстановительный
пентозофосфатный цикл состоит из трёх стадий:
Карбоксилирования РДФ.
Восстановления. Происходит восстановление 3-ФГК до
3-ФГА.
Регенерация акцептора РДФ. Осуществляются в серии
реакций взаимопревращений фосфорилируемых сахаров с
различным числом углеродных атомов (триоз, тетроз,
пентоз, гексоз, и т.д.)

37. Общее уравнение цикла Кальвина

Н2СО (Р)
С=О
НО-С-Н + * СО2
Н-С-ОН
Н2СО (Р)
РДФ
Н2*СО (Р)
2 НСОН
СООН
3-ФГК
Н2*СО (Р)
2НСОН
СОО (Р)
1,3-ФГК
Н2*СО (Р)
2НСОН
С=О
Н
3-ФГА
Н2*СО (Р)
2С=О
НСОН
3-ФДА
конденсация, или
полимеризация
Н
Н2СО (Р)
Н2СО (Р)
С=О
С=О
С=О
НСОН
НОСН
НОСН
НОСН
Н*СОН
НСОН
Н*СОН
НСОН
НСОН
НСОН
Н2СО (Р)
Н2СОН
Н2СО (Р)
1,6-дифосфат- фруктозо-6глюкоза-6фруктоза
фосфат
фосфат
Н
С=О
НСОН
НОСН
Н*СОН
НСОН
Н2СОН
глюкоза

38. С4-фотосинтез (путь Хэтча – Слэка – Карпилова)

Осуществляется у растений с двумя типами хлоропласта.
Акцептором СО2 помимо РДФ может быть трех
углеродное соединение – фосфоэнол ПВК (ФЕП)
C4 –путь был впервые обнаружен
у тропических злаков. В работах
Ю.С.Карпилова, М.Хэтча, К.Слэка с
использованием меченого углерода
было показано, что первыми
продуктами фотосинтеза у этих
растений являются органические
кислоты.

39.

40. Фотосинтез по типу толстянковых

Характерно для растений
суккуленотов.В ночное время
фиксируют углерод в
органические кислоты по
преимуществу в яблочные. Это
происходит под действием
ферментов
пируваткарбокислазы. Это
позволяет в течении дня
держать устьица закрытыми и
таким образом сокращать
транспирацию. Этот тип
получил название САМфотосинтез.

41. САМ фотосинтез

При CAM фотосинтезе происходит разделение
ассимиляции CO2 и цикла Кальвина не в
пространстве как у С4, а во времени. Ночью в
вакуолях клеток по аналогичному
вышеописанному механизму при открытых
устьицах накапливается малат, днём при
закрытых устьицах идёт цикл Кальвина. Этот
механизм позволяет максимально экономить
воду, однако уступает в эффективности и С4, и
С3.

42.

43.

Фотодыхание

44. Влияние внутренних и внешних факторов на фотосинтез

Фотосинтез
значительно
изменяется из-за
влияния на него
комплекса часто
взаимодействующих
внешних и внутренних
факторов.

45. Факторы, влияющие на фотосинтез

1.
Онтогенетическое
состояние растения.
Максимальная
интенсивность
фотосинтеза наблюдается
во время перехода
растений от вегетации в
репродуктивную фазу. У
стареющих листьев
интенсивность
фотосинтеза значительно
падает.

46. Факторы, влияющие на фотосинтез

2. Свет. В темноте фотосинтез не происходит, так как
образующийся при дыхании углекислый газ выделяется из
листьев; с увеличением интенсивности света достигается
компенсационная точка при которой поглощение
углекислого газа при фотосинтезе и ее освобождение при
дыхании уравновешивают друг друга.

47. Факторы, влияющие на фотосинтез

3. Спектральный
состав света.
Спектральный
состав солнечного
света испытывает
некоторые
изменения в
течении суток и в
течении года.

48. Факторы, влияющие на фотосинтез

4. СО2.
Является основным
субстратом фотосинтеза и от
его содержания зависит
интенсивность этого процесса.
В атмосфере содержится
0,03% по объему; увеличение
объема углекислого газа от 0,1
до 0,4% увеличивает
интенсивность фотосинтеза до
определенного предела, а
затем сменяется
углекислотным насыщением.

49. Факторы, влияющие на фотосинтез

5.Температура.
У растений умеренной
зоны оптимальная
температура для
фотосинтеза
является 20-25; у
тропических – 2035.

50. Факторы, влияющие на фотосинтез

6. Содержание воды.
Снижение обезвоженности тканей более чем на 20%
приводит к уменьшению интенсивности фотосинтеза и к
его дальнейшему прекращению, если потеря воды будет
более 50%.

51. Факторы, влияющие на фотосинтез

7. Микроэлементы.
Недостаток Fe
вызывает хлороз и
влияет на активность
ферментов. Mn
необходим для
освобождения
кислорода и для
усвоения углекислого
газа. Недостаток Cu и
Zn снижает фотосинтез
на 30%

52. Факторы, влияющие на фотосинтез

8.Загрязняющие
вещества и
химические
препараты.
Вызывают
снижение
фотосинтеза.
Наиболее
опасные
вещества: NO2,
SO2, взвешенные
частицы.

53. Суточный ход фотосинтеза

При умеренной дневной температуре и достаточной
влажности дневной ход фотосинтеза примерно
соответствует изменению интенсивности солнечной
инсоляции. Фотосинтез, начинаясь утром с восходом
солнца, достигает максимума в полуденные часы,
постепенно снижается к вечеру и прекращается с заходом
солнца. При повышенной температуре и уменьшении
влажности максимум фотосинтеза сдвигается на ранние
часы.

54. Вывод

Таким образом фотосинтез – единственный процесс на
Земле, идущий в грандиозных масштабах, связанный с
превращением энергии солнечного света в энергию химических
связей. Эта энергия, запасенная зелеными растениями,
составляет основу для жизнедеятельности всех других
гетеротрофных организмов на Земле от бактерий до человека.