Бронхиальная астма. Современные подходы к лечению

Глюкокортикостероиды как основные медикаментозные средства для лечения БА. ИГКС.

Как известно, в основе течения бронхиальной аст мы (БА) лежит хроническое воспаление, и основным методом лечения этого заболевания является применение противовоспалительных средств. На сегодняшний день глюкокортикостероиды признаны основными медикаментозными средствами для лечения БА.

Системные ГКС остаются и сегодня препаратами выбора в лечении обострения БА , но в конце 60х годов прошлого столетия началась новая эра в лечении БА и связана она с появлением и внедрением в клиническую практику ингаляционных глюкокортикостероидов (ИГКС).

ИГКС в лечении пациентов с БА в настоящее время рассматриваются в качестве препаратов первой линии . Основное преимущество ИГКС состоит в непосредственной доставке активного вещества в дыхательные пути и создании там более высоких концентраций препарата, при одновременном устранении или сведении к минимуму системных побочных эффектов. Первыми ИГКС для лечения БА были созданы аэрозоли водорастворимого гидрокортизона и преднизолона. Однако в связи с высоким системным и низким противовоспалительным действием их использование было малоэффективным . В начале 1970-х гг. были синтезированы липофильные глюкокортикостероиды, обладающие высокой местной противовоспалительной активностью и слабым системным действием. Таким образом, в настоящее время ИГКС стали самыми эффективными препаратами для базисной терапии БА у больных любого возраста (уровень доказательности А).

ИГКС способны уменьшать выраженность симптомов БА , подавлять активность аллергического воспаления , снижать бронхиальную гиперреактивность к аллергенам и неспецифическим раздражителям (физической нагрузке, холодному воздуху, поллютантам и др.), , улучшать бронхиальную проходимость , улучшать качество жизни больных, уменьшать число пропусков школы и работы . Показано, что применение ИГКС пациентами с БА приводит к значительному снижению числа обострений и госпитализаций, уменьшает летальность от БА, а также предупреждает развитие необратимых изменений в дыхательных путях (уровень доказательности А) . ИГКС также успешно используются для лечения ХОБЛ и аллергического ринита как наиболее мощные препараты с противовоспалительной активностью .

В отличие от системных глюкокортикостероидов, ИГКС характеризуются высоким сродством к рецепторам, более низкими терапевтическими дозами и минимальным числом побочных эффектов.

Превосходство ИГКС в лечении БА над другими группами противовоспалительных средств не вызывает сомнения и на сегодняшний день, по данным большинства отечественных и зарубежных специалистов, ИГКС являются наиболее эффективными препаратами для лечения больных с БА . Но даже в хорошо изученных областях медицины бытуют недостаточно обоснованные, а иногда и ложные представления. По сей день продолжаются дискуссии относительно того, как рано необходимо начинать терапию ИГКС, в каких дозах, каким ИГКС и посредством какого доставочного устройства, как длительно проводить терапию, и самое, главное, как быть уверенным, что назначенная терапия ИГКС не приносит вреда организму, т.е. не проявляется системное действие и другие побочные эффекты кортикостероидов. Именно на борьбу с такими тенденциями, бытующими в мнении как врачей, так и пациентов, снижающими эффективность лечения и профилактики БА, направлена медицина, основанная на доказательствах (evidence–based medicine).

В клинической практике в настоящее время используют следующие ИГКС: беклометазона дипропионат (БДП), будесонид (БУД), флутиказона пропионат (ФП), триамцинолона ацетонид (ТАА), флунизолид (ФЛУ) и мометазона фуроат (МФ). Эффективность терапии ИГКС непосредственно зависит от: активного вещества, дозы, формы и способа доставки, комплаенса. сроков начала лечения, продолжительности терапии, тяжести течения (обострения) БА, а также ХОБЛ .

Какой ИГКС эффективней?

В эквивалентных дозах все ИГКС одинаково эффективны (уровень доказательности А) . Фармакокинетику препаратов, а следовательно, терапевтичическую эффективность определяют физико-химические свойства молекул ГКС. Поскольку молекулярная структура ИГКС отличается, они имеют различную фармакокинетику и фармакодинамику. Для сравнения клинической эффективности и возможных побочных эффектов ИГКС предложено использовать терапевтический индекс соотношение положительных (желательных) клинических и побочных (нежелательных) эффектов, иными словами, эффкктивность ИГКС оценивают по их системному действию и местной противовоспалительной активности. При высоком терапевтическом индексе имеет место лучшее соотношение эффект/риск. Многие фармакокинетические показатели являются важными для определения терапевтического индекса. Так, противовоспалительная (местная) активность ИГКС определяется следующими свойствами препаратов: липофильностью, что позволяет им быстрее и лучше захватываться из дыхательных путей и дольше задерживаться в тканях органов дыхания; сродством к ГКСрецепторам; высоким первичным эффектом инактивации в печени; длительностью связи с клетками мишени .

Одним из наиболее важных показателей является липофильность, которая коррелирует с аффинностью препарата к стероидным рецепторам и периодом его полувыведения. Чем выше липофильность, тем эффективнее препарат, поскольку при этом он легко проникает через клеточные мембраны и увеличивается его накопление в легочной ткани. Это увеличивает продолжительность его действия в целом и местного противовоспалительного эффекта путем формирования резервуара препарата.

В наибольшей степени липофильность проявляется у ФП, далее по этому показателю следуют БДП и БУД. . ФП и МФ являются высоколипофильными соединениями, как следствие, имеют больший объем распределения, по сравнению с препаратами, отличающимися меньшей липофильностью БУД, ТАА. БУД приблизительно в 6-8 раз менее липофилен, чем ФП, и, соответственно, в 40 раз менее липофилен по сравнению с БДП. Вместе с тем ряд исследований показали, что менее липофильный БУД задерживается в легочной ткани дольше, чем ФП и БДП. Это объясняется липофильностью конъюгатов будесонида с жирными кислотами, которая в десятки раз превышает липофильность интактного БУД, чем и обеспечивается длительность его пребывания в тканях дыхательных путей . Внутриклеточная эстерификация БУД жирными кислотами в тканях дыхательных путей приводит к местной задержке и формированию «депо» неактивного, но медленно регенерирующего свободного БУД. Более того, большой внутриклеточный запас конъюгированного БУД и постепенное выделение свободного БУД из конъюгированной формы может удлинить сатурацию рецептора и противовоспалительную активность БУД, несмотря на его меньшее, по сравнению с ФП и БДП, сродство к ГКСрецептору .

Наибольшее сродство к ГКС-рецепторам имеет ФП (приблизительно в 20 раз выше, чем у дексаметазона, в 1,5 раза выше, чем у активного метаболита БДП -17-БМП, и в 2 раза выше, чем у БУД). Индекс сродства к рецепторам БУД - 235, БДП - 53, ФП - 1800. Но, несмотря на то, что индекс сродства БДП наиболее низкий, он высокоэффективен за счет превращения при попадании в организм в монопропионат, обладающий индексом сродства 1400. То есть наиболее активными по сродству к ГКС-рецепторам являются ФП и БДП .

Как известно, эффективность препарата оценивается его биодоступностью. Биодоступность ИГКС складывается из биодоступности дозы, абсорбированной из желудочно-кишечного тракта, и биодоступности дозы, абсорбированной из легких .

Высокий процент отложения препарата во внутрилегочных дыхательных путях в норме дает лучший терапевтический индекс для тех ИГКС, которые имеют низкую системную биодоступность за счет всасывания со стороны слизистых полости рта и ЖКТ. Это относится, например, к БДП, имеющему системную биодоступность за счет кишечной абсорбции, в отличие от БУД, обладающего системной биодоступностью преимущественно за счет легочной абсорбции . Для ИГКС с нулевой биодоступностью (ФП) эффективность лечения определяют только вид устройства доставки препарата и техника проведения ингаляции и эти параметры не влияют на терапевтический индекс .

Что касается метаболизма ИГКС, то БДП быстро, в течение 10 мин, метаболизируется в печени с образованием одного активного метаболита - 17БМП и двух неактивных - беклометазона 21-монопропионата (21-БМН) и беклометазона. ФП быстро и полностью инактивируется в печени с образованием одного частично активного (1% активности ФП) метаболита - 17β-карбоксильной кислоты. Будесонид быстро и полностью метаболизируется в печени при участии цитохрома р450 3А (CYP3A) с образованием 2 главных метаболитов: 6β-гидроксибудесонид (образует оба изомера) и 16β-гидроксипреднизолон (образует только 22R). Оба метаболита обладают слабой фармакологиче ской активностью .

Сравнение применяемых ИГКС затруднено вследствие различий их фармакокинетики и фармакодинамики. ФП по всем исследуемым показателям фармакокинетики и фармакодинамики превосходит другие ИГКС. Результаты последних исследований свидетельствуют, что ФП по меньшей мере в 2 раза более эффективен, чем БДП и БУД в одинаковых дозах.

Недавно опубликованы результаты проведенного метаанализа 14 сравнительных клинических исследований: ФП с БДП (7 исследований) или БУД (7 исследований). Во всех 14 исследованиях ФП назначался в половинной (или меньшей) дозе по сравнению с БДП или БУД. При сравнении эффективности БДП (400/1600 мкг/сут) с ФП (200/800 мкг/сут) авторы не обнаружили достоверных отличий в динамике утренней максимальной объемной скорости выдоха (PEFR) ни в одном из 7 проанализированных исследований. Клиническая эффективность, а также уровень кортизола в сыворотке крови в утреннее время достоверно не отличались. При сравнении эффективности БУД (400/1600 мкг/сут) с ФП (200/800 мкг/сут) показано, что ФП статистически достоверно более существенно увеличивает PEFR, чем БУД. При использовании низких доз препаратов нет отличий между этими препаратами в плане снижения уровня кортизола в сыворотке крови в утреннее время, однако при использовании более высоких доз препаратов установлено, что ФП в меньшей степени воздействует на этот показатель. Таким образом, результаты метаанализа свидетельствуют о том, что эффективность БДП и ФП в половинной дозе эквивалентны по влиянию на показатели PEFR и клинической эффективности. ФП в половинной дозе более эффективен, чем БУД в отношении влияния на PEFR. Эти данные подтверждают фармакокинетические характеристики, относительную аффиность трех исследуемых препаратов к стероидным рецепторам.

Клинические испытания, сравнивавшие эффективность ИГКС в виде улучшения симптомов и показателей функции внешнего дыхания, показывают, УД и БДП в аэрозольных ингаляторах при одинаковых дозах практически не отличаются по эффективности, ФП обеспечивает такое же дейст вие, как удвоенная доза БДП или БУД в дозированном аэрозоле.

Cравнительную клиническую эффективность различных ИГКС в настоящее время активно изучают.

В ы бор дозы ИГКС. Расчетная рекомендуемая или оптимальная? Что эффективней? Значительный интерес для врачей представляет выбор суточной дозы ИГКС и продолжительность терапии при проведения базисной терапии БА с целью контроля над симптомами астмы. Лучший уровень контроля за течением БА быстрее достигается при использовании более высоких доз ИГКС (уровень доказательности А, таблица 1) .

Первоначальная дневная доза ИГКС обычно должна составлять 400-1000 мкг (в пересчете на беклометазон), при более тяжелом течении БА можно рекомендовать более высокие дозы ИГКС или начать лечение системными ГКС (С) . Стандартные дозы ИГКС (эквивалентные 800 мкг беклометазона) при неэффективности могут быть увеличены до 2000 мкг в пересчете на беклометазон (А) .

Данные о дозозависимых эффектах, например, ФП неоднозначны. Так, некоторые авторы отмечают дозозависимое возрастание фармакодинамических эффектов этого препарата , тогда как другие исследователи указывают, что применение низких (100 мкг/сут) и высоких доз (1000 мкг/сут) ФП эффективны практически в равной степени .

Таблица 1. Р асчетные эквивалентные дозы ИГКС (мкг) А.Г. Чучалин, 2002 в модификации

Низкая Средняя Высокая Низкая Средняя Высокая
БДП(Беклозон Эко Легкое дыхание, Беклат, Беклофорт) 200–500 500–1000 > 1000 100- 400 400- 800 > 800
БУД(Будесонид, Будекорт) 200-400 400-800 > 800 100-200 200-400 > 400
ФЛУ * 500-1000 1000 2000 > 2000 500 750 1000 1250 > 1250
ФП (Фликсотид, Флохал) 100-250 250-500 > 500 100-200 200-500 > 500
ТА * 400 -1000 1000 2000 > 2000 400 800 800 1200 > 1200

* активные вещества, препараты которых в Украине не зарегистрированы

Однако, с повышением дозы ИГКС увеличивается выраженность их системных нежелательных эффектов, тогда как в низких и средних дозах эти препа раты редко вызывают клинически значимые неже лательные лекарственные реакции и характеризуются хорошим соотношением риск/польза (уровень доказательности А) .

Доказана высокая эффективность ИГКС при назначении 2 раза в день; при применении ИГКС 4 раза в день в той же суточной дозе эффективность лечения возрастает незначительно (А) .

Pedersen S. и соавт. показали, что низкие дозы ИГКС снижают частоту обострений и потребность в бета2-адреномиметиках, улучшают показатели ФВД, но для лучшего контроля воспалительного процесса в дыхательных путях и максимального снижения бронхиальной гиперреактивности требуются высокие дозы этих препаратов .

ИГКС до недавнего времени не применяли для лечения обострений БА, т.к. считали их менее эффективными при обострении, чем системные ГКС. Ряд исследований свидетельствует о высокой эффективности приема системных ГКС при обострениях БА (уровень доказательности А) . Однако, с 90-х годов прошлого столетия, когда появились новые активные ИГКС (БУД и ФП), их начали применять для лечения обострений БА. В ряде клинических исследований доказано, что эффективность ИГКС БУД и ФП в высоких дозах коротким курсом (2 – 3 недели) не отличается от эффективности дексаметазона при лечении легкого и тяжелого обострения БА. Применениие ИГКС при обострении БА позволяет достичь нормализации клинического состояния больных и показателей функции дыхания, не вызывая при этом побочные системные эффекты .

В большинстве исследований было установлено умеренная эффективность ИГКС в лечении обострений БА, которая колебалась в пределах 50 – 70 % при применении удвоенной дозы (от дозы базисной терапии) ФП, и повышение эффективности лечения при дополнительном применении пролонгированного бета 2 – агониста сальметерола на 10– 15 % . В соответствии с рекомендациями международных консенсусов по лечению бронхиальной астмы альтернативой повышению дозы препарата при невозможности обеспечить оптимальный контроль БА с использованием ИГКС в низких и средних дозах является назначение b-агонистов пролонгированного действия .

Усилениие эффекта ИГКС при их сочетании с пролонгированными агонистами бета2адренорецепторов у больных ХОБЛ доказана в рандомизированном контролируемом двойном слепом исследовании TRISTAN (Trial of Inhaled Steroids and Long-acting бета2-agonists), включавшем 1465 пациентов . На фоне комбинированной терапии (ФП 500 мкг + сальметерол 50 мкг 2 раза в день) частота обострений ХОБЛ снизилась на 25 % по сравнению с применением плацебо. Комбинированная терапия обеспечивала более выраженный эффект у больных с тяжелой формой ХОБЛ, у которых исходный ОФВ1 был менее 50 % от должно го.

Эффективность используемых при БА лекарственных средств во многом зависит от средств доставки, что влияет на депозицию препарата в дыхательных путях. Легочная депозиция лекарственных средств при использовании различных систем доставки колеблется в пределах от 4 до 60 % введенной дозы. Существует четкая зависимость между легочной депозицией и клиническим эффектом препарата. Дозированные аэрозольные ингаляторы (ДАИ), внедренные в клиническую практику в 1956 году, являются наиболее распространенными ингаляционными устройствами. При использовании ДАИ приблизительно 10-30 % препарата (в случае ингаляции без спейсера) попадает в легкие, а затем в системный кровоток. Большая часть препарата, которая составляет приблизительно 70 80 %, оседает в полости рта и гортани, и проглатывается. Ошибки при использовании ДАИ достигают 60 %, приводят к недостаточной доставке лекарственного вещества в дыхательные пути и, тем самым, снижают эффективность терапии ИГКС . Применение спейсера позволяет снизить распределение препарата в полости рта до 10 % и оптимизировать поступление активного вещества в дыхательные пути, т.к. не требует абсолютной координации действий пациентов.

Чем тяжелее у больного протекает БА, тем менее эффективна терапия с помощью обычных дозирующих аэрозолей, так как только 20-40 % пациентов могут воспроизвести правильную технику ингаляции при их использовании . В связи с этим в последнее время созданы новые ингаляторы, которые не требуют от пациента координации движений во время ингаляции. В этих доставочных устройствах подача препарата активизируется вдохом пациента, это так называемые BOI (Breathe Operated Inhaler) – ингалятор, активируемый вдохом. К ним относятся ингалятор Easi-Breath («изи-бриз» легкое дыхание). В настоящее время в Украине зарегистрирован Беклазон Эко Легкое Дыхание. Сухопорошковые ингаляторы (дипихалер (Флохал, Будекорт), дискус (Фликсотид (ФП), Серетид – ФП + сальметерол), небулайзеры – доставочные устройства, обеспечивающие оптимальность дозы ИГКС и уменьшающие нежелательные побочные эффекты терапии. БУД, применяемый через Турбухалер, оказывает такое же действие, как удвоенная доза БУД в дозированном аэрозоле .

Раннее начало противовоспалительной терапии ИГКС снижает риск развития необратимых изменений в дыхательных путях и облегчает течение астмы. Позднее начало лечения ИГКС в последующем приводит к более низким результатам функциональных тестов (уровень доказательности С) .

Рандомизированное двойное слепое плацебоконтролируемое исследование START (Inhaled Steroid Treatment as Regular Therapy in Early Asthma Study) показало, чем раньше начата базисная терапия при БА ИГКС, тем легче протекает заболевание. Результаты START были опубликованы в 2003 г. . Эффективность ранней терапии БУД была подтверждена ростом показателей функции внешнего дыхания.

Длительное лечение ИГКС улучшает или нормализует функцию легких, уменьшает дневные колебания пиковой скорости выдоха, потребность в бронхолитиках и ГКС для системного применения, вплоть до полной их отмены. Более того, при длительном приеме препаратов снижается частота обострений, госпитализаций и смертность больных.

Н ежелательные эффекты ИГКС или безопасность лечения

Несмотря на то, что ИГКС оказывают местное воздействие на дыхательные пути, существуют разноречивые сведения о проявлении нежелательных системных эффектов (НЭ) ИГКС, от их отсутствия и до выраженных проявлений, представляющих риск для больных, особенно для детей . К таким НЭ необходимо отнести подавление функции коры надпочечников, воздействие на метаболизм костной ткани, кровоподтеки и утончение кожи, кандидоз ротовой полости, образование катаракты .

Убедительно доказано, что долговременная терапия ИГКС не приводит к значимому изменению структуры костной ткани, не влияет на липидный обмен, состояние иммунной системы, не повышает риск развития субкапсулярной катаракты. Однако вопросы, касающиеся потенциального воздействия ИГКС на скорость линейного роста детей и состояние гипоталамо-гипофизарно-надпочечниковой системы (ГГНС), продолжают обсуждаться.

Проявления же системных эффектов преимущественно определяются фармакокинетикой препарата и зависят от общего количества ГКС, поступающего в системный кровоток (системная биодоступность) и величины клиренса ГКС. Поэтому основным фактором, определяющим эффективность и безопасность ИГКС, является селективность препарата по отношению к дыхательным путям - наличие высо кой местной противовоспалительной активности и низкой системной активности (табл. 2).

Таблица 2 . Селективность ИГКС и системная активность ИГКС

ИГКС Местная активность Системная активность Соотношение местной/системной активности
БУД 1,0 1,0 1,0
БДП 0,4 3,5 0,1
ФЛУ 0,7 12,8 0,05
ТАА 0,3 5,8 0,05

Безопасность ИГКС определяется главным обра зом его биодоступностью из ЖКТ и находится в обратно пропорциональной зависимости от нее. Пе роральная биодоступность различных ИГКС находится в пределах от менее 1 % и до 23 %. Приме нение спейсера и полоскание полости рта после ингаляции значительно снижают пероральную био доступность (уровень доказательности В). Оральная биодоступность почти нулевая у ФП и 6-13% у БУД, а ингаляционная биодоступность ИГКС ко леблется в пределах от 20 (ФП) до 39% (ФЛУ) .

Системная биодоступность ИГКС представляет собой сумму ингаляционной и оральной биодоступности. У БДП системная биодоступность составляет примерно 62%, что несколько превышает таковую у других ИГКС.

ИГКС имеют быстрый клиренс, его величина примерно совпадает с величиной печеночного кровотока, и это является одной из причин минимальных проявлений системных НЭ. В системный кровоток ИГКС, после прохождения через печень, поступают преимущественно в виде неактивных метаболитов, за исключением активного метаболита БДП - беклометазона 17-монопропионата (17-БМП) (приблизительно 26%), и только незначительная часть (от 23% ТАА до менее 1% ФП) - в виде неизмененного препарата. При первом прохождении через печень инактивируется примерно 99 % ФП и МФ, 90 % БУД, 80 90 % ТАА и 60 70 % БДП. Высокая активность метаболизма новых ИГКС (ФП и МФ основная фракция, обеспечивающая их системную активность, составляет не более 20 % от принятой дозы (как правило, не превышающей 750-1000мкг/сутки)) может объяснить их лучший профиль безопасности по сравнению с другими ИГКС, и вероятность развития клинически значимых нежелательных лекарственных явлений крайне низка, а если таковые и имеются, то обычно незначительно выражены и не требуют прекращения терапии .

Все перечисленные системные эффекты ИГКС являются следствием их способности, как агонистов ГКС-рецептора, влиять на гормональную регуляцию в ГГНС. Поэтому беспокойства врачей и пациентов, связанные с применением ИГКС, могут быть вполне оправданы. В то же время, некоторые исследования не продемонстрировали значительного влияния ИГКС на ГГНС .

Большой интерес вызывает МФ, новый ИГКС с очень высокой противовоспалительной активностью, у которого отсутствует биодоступность. В Украине он представлен лишь назальным спреем Назонекс.

Некоторые типичные для ГКС эффекты никогда не были отмечены при применении ИГКС, как, например, связанные с иммуносупрессивными свойствами этого класса препаратов или с развитием субкапсулярной катаракты.

Таблица 3. С равнительные исследования ИГКС, которые включали определение терапевтической эффе к т ивности и системной активности по исходному уровню сывороточного кортизола или тесту со стимуляцией аналогом АКТГ.

Количество пациентов ИГКС/дневная доза мкг двух препаратов Эффективность(утренняя ПСВ*) Системная активность
672 взрослых ФП/100, 200, 400, 800 иБДП/400 ФП 200 = БДП 400 ФП 400 = БДП 400
36 взрослых БДП/1500 и БУД/1600 БДП = БУД БДП = БУД – нет эффекта
398 детей БДП/400 и ФП/200 ФП > БДП ФП = БДП – нет эффекта
30 взрослых БДП/400 и БУД/400 БДП = БУД БДП = БУД – нет эффекта
28 взрослых БДП/1500 и БУД/1600 БДП = БУД БДП = БУД
154 взрослых БДП/2000 и ФП/1000 ФП = БДП БДП > ФП
585 взрослых БДП/1000 и ФП/500 ФП = БДП ФП = БДП – нет эффекта
274 взрослых БДП/1500 и ФП/1500 ФП > БДП БДП = ФП – нет эффекта
261 взрослых БДП/400 и ФП/200 ФП = БДП БДП > ФП
671 взрослых БУД/1600 и ФП/1000,2000 ФП 1000 > БУД, ФП 2000 > БУД ФП 1000 = БУД, ФП 2000 > БУД
134 взрослых БДП/1600 и ФП/2000 ФП = БДП ФП > БДП
518 взрослых БУД/1600 и ФП/800 ФП > БУД БУД > ФП
229 детей БУД/400 и ФП/400 ФП > БУД БУД > ФП
291 взрослых ТАА/800 и ФП/500 ФП > ТАА ФП =ТАА
440 взрослых ФЛУ/1000 и ФП/500 ФП > ФЛУ ФП = ФЛУ
227 взрослых БУД/1200 и ФП/500 БУД = ФП БУД > ФП

Примечание: * ПСВ пиковая скорость выдоха

Зависимость системного эффекта ИГКС от дозы препарата не очевидна, результаты исследований противоречивы (таблица 3) . Не смотря на возникающие вопросы, представленные клинические случаи заставляют задуматься о безо пасности долговременной терапии высокими дозами ИГКС. Вероятно, существуют пациенты, высокочувствительные к стероидной терапии. Назначение высоких доз ИГКС таким лицам может обуславливать повышенную частоту развития системных по бочных эффектов. Пока неизвестны факторы, обуславливающие высокую чувствительность пациента к ГКС. Можно лишь заметить, что число таких больных крайне невелико (4 описанных случая на 16 млн. пациентов/лет применения одного только ФП начиная с 1993 г.) .

Наибольшие беспокойства вызывает потенциальная способность ИГКС влиять на рост детей, поскольку данные препараты обычно применяются на протяжении длительного времени. На рост детей, больных БА, не получающих ГКС в любой форме, может оказывать влияние целый ряд факторов, както: сопутствующая атопия, тяжесть астмы, пол и другие. Детская астма, по всей вероятности, ассоциирована с некоторой задержкой роста, хотя и не приводит к снижению финального взрослого роста . Из-за многих факторов, влияющих на рост у детей, больных БА, исследования, посвященные влиянию ИГКС или системных ГКС на рост, имеют противоречивые результаты.

К их числу местных побочных эффектов ИГКС относят: кандидоз полости рта и ротоглотки, дисфонию, иногда кашель, возникающий вследствие раздражения верхних дыхательных путей, парадоксальный бронхоспазм .

При приеме низких доз ИГКС частота развития местных побочных эффектов невелика. Так, кандидоз полости рта встречается у 5 % пациентов, использующих низкие дозы ИГКС, и у до 34 % больных, применяющих высокие дозы этих препаратов. Дисфония отмечается у 5-50 % больных, применяющих ИГКС; ее развитие также ассоциируется с более высокими дозами препаратов. В некоторых случаях при использовании ИГКС возможно развитие рефлекторного кашля. В ответ на введение ИГКС, проведенное с помощью ДАИ, может развиваться парадоксальный бронхоспазм. В клинической практике прием бронходилатирующих препаратов часто маскирует бронхоконстрикцию такого рода .

Таким образом, ИГКС были и остаются краеугольным камнем терапии БА у детей и взрослых. Безопасность долговременного применения низких и средних доз ИГКС не вызывает сомнения. Длительное назначение высоких доз ИГКС может приводить к развитию системных эффектов, наиболее значимыми из которых являются замедление СЛР детей и угнетение функции надпочечников.

Последние международные рекомендации по лечению БА у взрослых и детей предполагают назначение комбинированной терапии ИГКС и бета-2-агонистами длительного действия во всех случаях, когда использование низких доз ИГКС не позволяет достичь эффекта. Целесообразность этого подхода подтверждается не только его более высокой эффективностью, но и лучшим профилем безопасности.

Назначение высоких доз ИГКС целесообразно только при неэффективности комбинированной терапии. Вероятно, в этом случае решение об использовании высоких доз ИГКС должно быть принято пульмонологом или аллергологом. После достижения клинического эффекта целесообразно титрование дозы ИГКС до наименьшей эффективной. В случае долговременной терапии БА высокими дозами ИГКС необходимо проведение мониторинга безопасности, который может включать измерение СЛР у детей и определение уровня кортизола в утренние часы.

Залогом успешной терапии являются взаимоотношения больного с врачом и отношение больного к лечению комплаенсе.

Следует помнить, что это общая установка. Не исключается индивидуальный подход к лечению больных БА, когда врач выбирает препарат, режим и дозу его назначения. Если врач, основываясь на рекомендациях соглашений по ведению БА, будет руководствоваться своими знаниями, существующей информацией и личным опытом, то успех лечения гарантирован.

Л ИТЕРАТУРА

1. Global Strategy for Asthma Management and Prevention. National Institutes of Health, National Heart, Lung and Blood Institute. Revised 2005. NIH publication № 02-3659 // www.ginasthma.co m. Barnes PJ. Efficacy of inhaled corticosteroids in asthma. J Allergy Clin Immunol 1998;102(4 pt 1): 531-8.

2. Barnes N.C., Hallet C., Harris A. Clinical experience with fluticasone propionate in asthma: a meta-analysis of efficacy and systemic activity compared with budesonide and beclomethasone dipropionate at half the microgram dose or less. Respir. Med., 1998; 92: 95.104.

3. Pauwels R, Pedersen S, Busse W, et al. Early intervention with budesonide in mild persistent asthma: a randomized, double-blind trial. Lancet 2003;361:1071-76.

4. Основные положения отчета группы экспертов EPR-2: ведущие направления в диагностике и лечении бронхиальной астмы. Национальный институт сердца, легких и крови. NIH publication N 97-4051A. Май 1997 / Пер. под ред. А.Н. Цой. М., 1998.

5. Crocker IC, Church MK, Newton S, Townley RG. Glucocorticoids inhibit proliferation and interleukin 4 and interleukin 5 secretion by aeroallergenspecific T-helper type 2 cell lines. Ann Allergy Asthma Immunol 1998;80:509-16.

6. Umland SP, Nahrebne DK, Razac S, et al. The inhibitory effect of topically active glucocorticoids on IL4, IL5 and interferon gamma production by cultured primary CD4+ T cells. J. Allergy Clin. Immunol 1997;100:511-19.

7. Derendorf H. Pharmacokinetik and pharmakodynamic properties of inhaled corticosteroids in relation to effecacy and safety. Respir Med 1997;91(suppl. A):22-28.

8. Johnson M. Pharmakodynamics and pharmacokinetiks of inhaled glucocorticoids. J Allergy Сlin Immunol 1996;97:169-76.

9. Brokbank W, Brebner H, Pengelly CDR. Chronic asthma treated with aerosol hydrocortisone. Lancet 1956:807.

10. The Childhood Asthma Management Program Research Group. Long-term effects of budesonide or nedocromil in children with asthma // N. Engl. J.Med. – 2000. – Vol. 343. – P. 1054-1063.

11. Suissa S, Ernst P. // J Allergy Clin Immunol.-2001.-Vol 107, N 6.-P.937-944.

12. Suissa S., Ernst P., Benayoun S. et al. // N Engl J Med.-2000.-Vol 343, N 5.-P.332. Lipworth B.J., Jackson C.M. Safety of inhaled and intranasal corticosteroids: lessons for the new millennium // Drug Safety. – 2000. – Vol. 23. – P. 11–33.

13. Смоленов И.В. Безопасность ингаляционных глюкокортикостероидов: новые ответы на старые вопросы // Атмосфера. Пульмонология и аллергология. 2002. №3. – C. 10-14.

14. Burge P, Calverley P, Jones P, et al. Randomized, double bling, placebo controlled study of Fluticasone propionate in patient with moderate to severe chronic obstructive pulmonary diseases: the ISOLDE trial. BMJ 2000;320:1297-303.

15. Суточникова О.А., Чеpняев А.Л., Чучалин А.Г.Ингаляционные глюкокоpтикоcтеpоиды пpи лечении бpонxиальной аcтмы // Пульмонология. –1995. – Том 5. – С. 78 – 83.

16. Allen D.B., Mullen M., Mullen B. A meta-analysis of the effect of oral and inhaled corticosteroids on growth // J. Allergy Clin. Immunol. – 1994. – Vol. 93. – P. 967-976.

17. Hogger P, Ravert J, Rohdewald P. Dissolution, tissue binding and kinetiks of receptor binding of inhaled glucocorticoids. Eur Respir J 1993;6(suppl.17):584S.

18. Цой А.Н. Параметры фармакокинетики современных ингаляционных гликокортико-стероидов// Пульмонология. 1999. № 2. С. 73-79.

19. Miller-Larsson A., Maltson R. H., Hjertberg E. et al.Reversible fatty acid conjugation of budesonide:novel mechanism for prolonged retention of topically applied steroid in airway tissue // Drug.metabol. Dispos. 1998; v. 26 N 7: 623-630.A. K., Sjodin, Hallstrom G. Reversible formation of fatty acid esters of budesonide, an anti-asthma glucocorticoid, in human lung and liver microsomes // Drug. Metabolic. Dispos. 1997; 25: 1311-1317.

20. Van den Bosch J. M., Westermann C. J. J., Edsbacker J. et al. Relationship between lung tissue and blood plasma concentrations of inhaled budesonide // Biopharm Drug. Dispos. 1993; 14:455-459.

21. Wieslander E., Delander E. L., Jarkelid L. et al.Pharmacological importance of the reversible fatty acid conjugation of budesonide stadied in a rat cell line in vitro // Am. J. Respir. Cell. Mol. Biol. 1998;19: 1-9.

22. Thorsson L., Edsbacker S. Conradson T. B. Lung deposition of budesonide from Turbuhaler is twice that from a pressured metered-dose-inhaler p-MDI // Eur. Respir. J. 1994; 10: 1839-1844

23. Derendorf H. Pharmacokinetic and pharmacodynamic properties of inhaled corticosteroids in relation to efficacy and safety // Respir. Med. 1997; 91 (Suppl. A): 22-28

24. Jackson W. F. Nebulised Budesonid Therapy in asthma scientific and Practical Review. Oxford,1995: 1-64

25. Trescoli-Serrano C., Ward W. J., Garcia-Zarco M. et al. Gastroinstestinal absorbtion of inhaled budesonide and beclomethasone: has it any significant systemic effect? // Am. J. Respir. Crit. Care Med. 1995; 151 (№ 4 part 2):A. Borgstrom L. E, Derom E., Stahl E. et al. The inhalation device influences lung deposition and bronchodilating effect of terbutaline //Am. J. Respir. Crit. Care Med. 1996; 153: 1636-1640.

26. Ayres J.G., Bateman E.D., Lundback E., Harris T.A.J. High dose fluticasone propionate, 1 mg daily, versus fluticasone propionate, 2 mg daily, or budesonide, 1.6 mg daily, in patients with chronic severe asthma // Eur. Respir. J. – 1995. – Vol.8(4). – P. 579-586.

27. Boe J., Bakke P., Rodolen T., et al. High-dose inhaled steroids in asthmatics: Moderate efficacy gain and suppression of the hypothalamicpituitary-adrenal (HPA) axis // Eur. Respir. J. –1994. – Vol. 7. – P. 2179-2184.

28. Dahl R., Lundback E., Malo J.L., et al. A doseranging study of fluticasone propionate in adult patients with moderate asthma // Chest. – 1993. – Vol. 104. – P. 1352-1358.

29. Daley-Yates P.T., Price A.C., Sisson J.R. et al.Beclomethasone dipropionate: absolute bioavailability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled administration in man // J. Clin. Pharmacol. – 2001. – Vol. 51. – P. 400-409.

30. Mollmann H., Wagner M., Meibohm B. et al.Pharmacokinetic and pharmacodynamic evolution of fluticasone propionate after inhaled administra tion // Eur. J. Clin. Pharmacol. – 1999. – Vol. 53. – P. 459–467.

31. Ninan T.K., Russell G. Asthma, inhaled corticosteroid treatment, and growth // Arch. Dis. Child. –1992. – Vol. 67(6). – P. 703 705.

32. Pedersen S., Byrne P. O. A comparison of the efficacy and safety of inhaled corticosteroids in asthma // Eur. J. Allergy. Clin. Immunol. – 1997. – V.52 (39). – P.1-34

33. Thompson P. I. Drug delivery to the small airways// Amer. J. Repir. Crit. Med. – 1998. – V. 157. – P.199 – 202.

34. Boker J., McTavish D., Budesonide. An updated review of its pharmacological properties, and therapeutic efficacy in asthma and rhinitis // Drugs. –1992. – v. 44. – № 3. – 375 – 407.

35. Calverley P, Pauwels R, Vestibo J, et al. Combined salmeterol and Fluticasone in the treatment of chronic obstructive pulmonary disease: a randomized controlled trial. Lancet 2003;361:449-56.

36. Assesment of airway inflammation in asthma / A.M. Vignola. J. Bousquet, P. Chanez et al. // Am. J. Respir. Crit. Care Med. – 1998. – V. 157. – P. 184– 187.

37. Яшина Л.О., Гогунська І.В. Ефективність і безпечність інгаляційних кортикостероїдів в лікуванні загострень бронхіальної астми // Астма та алергія. – 2002. № 2. – С. 21 – 26.

38. Effectiveness and safety of inhaled corticosteroids in controlling acute asthma attacts in children who were treated in the emergency department: controlled comparative study with oral prednisolon / B.Volovits, B. Bentur, Y. Finkelshtein et al. // J. Allergy Clin. Immunol. – 1998. – V. 102. – N. 4. – P.605 – 609.

39. Синопальников А.И., Клячкина И.Л. Средства для доставки лекарств в дыхательные пути при бронхиальной астме // Российские медицинские вести. -2003. № 1. С. 15-21.

40. Nicklas RA. Paradoxical bronchospasm associated with the use of inhaled beta agonists. J Allergy Clin Immunol 1990;85:959-64.

41. Pedersen S. Asthma: Basic Mechanisms and Clinical Management. Ed. P. J. Barnes. London 1992, p. 701-722

42. Ebden P., Jenkins A., Houston G., et al. Comparison of two high dose corticosteroid aerosol treatments, beclomethasone dipropionate (1500 mcg/day) and budesonide (1600 mcg/day), for chronic asthma // Thorax. – 1986. – Vol. 41. – P.869-874.

43. Brown P.H., Matusiewicz S.P., Shearing C. et al.Systemic effects of high dose inhaled steroids:comparison of beclomethasone dipropionate and budesonide in healthy subjects // Thorax. – 1993.– Vol. 48. – P. 967-973.

44. Safety of inhaled and intranasal corticosteroids:lessons for the new millennium // Drug Safety. –2000. – Vol. 23. – P. 11–33.

45. Doull I.J.M., Freezer N.J., Holgate S.T. Growth of pre-pubertal children with mild asthma treated with inhaled beclomethasone dipropionate // Am. J.Respir. Crit. Care Med. – 1995. – Vol. 151. – P.1715-1719.

46. Goldstein D.E., Konig P. Effect of inhaled beclomethasone dipropionate on hypothalamicpituitary-adrenal axis function in children with asthma // Pediatrics. – 1983. – Vol. 72. – P. 60-64.

47. Kamada A.K., Szefler S.J. Glucocorticoids and growth in asthmatic children // Pediatr. Allergy Immunol. – 1995. – Vol. 6. – P. 145-154.

48. Prahl P., Jensen T., Bjerregaard-Andersen H.Adrenocortical function in children on high-dose steroid aerosol therapy // Allergy. – 1987. – Vol.42. – P. 541-544.

49. Priftis K., Milner A.D., Conway E., Honour J.W.Adrenal function in asthma // Arch. Dis. Child. –1990. – Vol. 65. – P. 838-840.

50. Balfour-Lynn L. Growth and childhood asthma // Arch. Dis. Child. – 1986. – Vol. 61(11). – P. 1049-1055.

51. Kannisto S., Korppi M., Remes K., Voutilainen R.Adrenal Suppression, Evaluated by a Low Dose Adrenocorticotropin Test, and Growth in Asthmatic Children Treated with Inhaled Steroids // Journal of Clinical Endocrinology and Metabolism. – 2000. – Vol. 85. – P. 652 – 657.

52. Prahl P. Adrenocortical suppression following treatment with beclomethasone dipropionate and budesonide // Clin. Exp. Allergy. – 1991. – Vol. 21.– P. 145-146.

53. Tabachnik E., Zadik Z. Diurnal cortisol secretion during therapy with inhaled beclomethasone dipropionate in children with asthma // J. Pediatr. –1991. – Vol. 118. – P. 294-297.

54. Capewell S., Reynolds S., Shuttleworth D. et al.Purpura and dermal thinning associated with high dose inhaled corticosteroids // BMJ. – 1990. Vol.300. – P. 1548-1551.

Ингаляционные глюкокортикостероиды (ИГКС) являются средствами первой линии, которые применяются для длительного лечения больных бронхиальной астмой (БА) . Они эффективно блокируют воспалительный процесс в дыхательных путях, а клиническим проявлением положительного эффекта ИГКС считается уменьшение выраженности симптомов заболевания и, соответственно, снижение потребности в приеме пероральных глюкокортикостероидов (ГКС), β 2 -агонистов короткого действия, снижение уровня воспалительных медиаторов в жидкости бронхоальвеолярного лаважа, улучшение показателей функции легких, снижение вариабельности в их колебании . В отличие от системных ГКС, ИГКС обладают высокой селективностью, выраженной противовоспалительной и минимальной минералокортикоидной активностью. При ингаляционном пути введения препаратов в легких откладывается приблизительно 10—30% номинальной дозы . Процент отложения зависит от молекулы ИГКС, а также от системы доставки препарата в дыхательные пути (дозированные аэрозоли или сухая пудра), причем при использовании сухой пудры пропорция легочного отложения удваивается по сравнению с использованием дозированных аэрозолей, включая и применение спейсеров . Большая часть дозы ИГКС проглатывается, абсорбируется из желудочно-кишечного тракта и быстро метаболизируется в печени, что обеспечивает высокий терапевтический индекс ИГКС по сравнению с системными ГКС

К препаратам для местного ингаляционного применения относятся флунизолид (ингакорт), триамцинолона ацетонид (ТАА) (азмакорт), беклометазон дипропионат (БДП) (бекотид, бекломет) и препараты современной генерации: будесонид (пульмикорт, бенакорт), флютиказона пропионат (ФП) (фликсотид), мометазона фуроат (МФ) и циклезонид. Для ингаляционного применения выпускаются препараты в виде аэрозолей, сухой пудры с соответствующими устройствами для их применения, а также растворы или суспензии для использования с помощью небулайзеров

В связи с тем что существует множество устройств для ингаляций ИГКС, а также из-за недостаточного умения больных пользоваться ингаляторами необходимо учесть, что количество ИГКС, доставляемого в дыхательные пути в виде аэрозолей или сухой пудры, определяется не только номинальной дозой ГКС, но и характеристикой устройства для доставки препарата — типом ингалятора, а также техникой ингаляции больного .

Несмотря на то что ИГКС оказывает местное воздействие на дыхательные пути, существуют разноречивые сведения о проявлении нежелательных системных эффектов (НЭ) ИГКС, от их отсутствия и до выраженных проявлений, представляющих риск для больных, особенно для детей . К таким НЭ необходимо отнести подавление функции коры надпочечников, воздействие на метаболизм костной ткани, кровоподтеки и утончение кожи, образование катаракты .

Проявления же системных эффектов преимущественно определяются фармакокинетикой препарата и зависят от общего количества ГКС, поступающего в системный кровоток (системная биодоступность, F) и величины клиренса ГКС. Исходя из этого можно предположить, что выраженность проявлений тех или иных НЭ зависит не только от дозировки, но и, в большей степени, от фармакокинетических свойств препаратов.

Поэтому основным фактором, определяющим эффективность и безопасность ИГКС, является селективность препарата по отношению к дыхательным путям — наличие высокой местной противовоспалительной активности и низкой системной активности (табл. 1).

В клинической практике ИГКС отличаются между собой по величине терапевтического индекса, представляющего собой отношение между выраженностью клинических (желательных) эффектов и системных (нежелательных) эффектов , поэтому при высоком терапевтическом индексе имеет место лучшее соотношение эффект/риск.

Биодоступность

ИГКС быстро всасываются в желудочно-кишечном тракте и дыхательных путях. На абсорбцию ГКС из легких могут оказывать влияние размеры ингалируемых частиц, так как частицы размером менее 0,3 ммк откладываются в альвеолах и всасываются в легочный кровоток .

При вдыхании аэрозолей из дозированных ингаляторов через спейсер с большим объемом (0,75 л — 0,8 л) увеличивается процент доставки препарата в периферические дыхательные пути (5,2%). При использовании дозированных ингаляторов с аэрозолями или сухой пудры ГКС через дискахалер, турбухалер и другие устройства только 10—20% ингалированной дозы откладывается в дыхательных путях, при этом до 90% дозы откладывается в ротоглоточной области и проглатывается . Далее эта часть ИГКС, абсорбируясь из желудочно-кишечного тракта, попадает в печеночный кровоток, где большая часть препарата (до 80% и более) инактивируется . В системный кровоток ИГС поступают преимущественно в виде неактивных метаболитов, за исключением активного метаболита БДП — беклометазона 17-монопропионата (17-БМП) (приблизительно 26%), и только незначительная часть (от 23% ТАА до менее 1% ФП) — в виде неизмененного препарата. Поэтому системная оральная биодоступность (Forа1) у ИГКС очень низка, она практически равна нулю.

Однако следует учесть, что часть дозы ИГКС [примерно 20% номинально принятой, а в случае БДП (17-БМП) — до 36%], поступая в дыхательные пути и быстро абсорбируясь, попадает в системный кровоток. Более того, эта часть дозы может вызывать внелегочные системные НЭ, особенно при назначении высоких доз ИГКС, причем здесь немаловажное значение отводится типу используемого ингалятора с ИГКС, так как при вдыхании сухой пудры будесонида через турбухалер легочное отложение препарата увеличивается в 2 раза и более по сравнению с ингаляцией из дозированных аэрозолей .

Таким образом, высокий процент отложения препарата во внутрилегочных дыхательных путях в норме дает лучший терапевтический индекс для тех ИГКС, которые имеют низкую системную биодоступность при оральном пути введения. Это относится, например, к БДП, имеющему системную биодоступность за счет кишечной абсорбции, в отличие от будесонида, обладающего системной биодоступностью преимущественно за счет легочной абсорбции .

Для ИГКС с нулевой биодоступностью после пероральной дозы (флютиказон), характер устройства и техника проведения ингаляции определяют только эффективность лечения, но не влияют на терапевтический индекс .

Поэтому при оценке системной биодоступности необходимо учитывать общую биодоступность, то есть не только низкую оральную (почти нулевую у флютиказона и 6—13% у будесонида), но и ингаляционную биодоступность, средние величины которых колеблются в пределах от 20 (ФП) до 39% (флунизолид) () .

Для ИГКС с высокой фракцией ингаляционной биодоступности (будесонид, ФП, БДП) системная биодоступность может возрастать при наличии воспалительных процессов в слизистой бронхиального дерева. Это было установлено при сравнительном исследовании системных эффектов по уровню снижения кортизола в плазме крови после однократного назначения будесонида и БДП в дозе 2 мг в 22 ч здоровым курящим и некурящим лицам . Следует отметить, что после ингаляции будесонида уровень кортизола у курящих был на 28% ниже, чем у некурящих.

Это позволило сделать вывод о том, что при наличии воспалительных процессов в слизистой дыхательных путей при астме и хроническом обструктивном бронхите может измениться системная биодоступность тех ИГКС, которые имеют легочную абсорбцию (в данном исследовании это будесонид, но не БДП, имеющий кишечную абсорбцию).

Большой интерес вызывает мометазона фуроат (МФ), новый ИГКС с очень высокой противовоспалительной активностью, у которого отсутствует биодоступность. Существует несколько версий, объясняющих этот феномен. Согласно первой из них, 1 МФ из легких не сразу попадает в системный кровоток, подобно будесониду, длительно задерживающемуся в дыхательных путях из-за образования липофильных конъюгатов с жирными кислотами. Это объясняется тем, что МФ имеет высоколипофильную группу фуроат в позиции С17 молекулы препарата, в связи с чем он поступает в системный кровоток медленно и в количествах, недостаточных для определения. Согласно второй версии, МФ быстро метаболизируется в печени. Третья версия гласит: агломераты лактоза-МФ обусловливают низкую биодоступность из-за снижения степени растворимости. Согласно четвертой версии, МФ быстро метаболизируется в легких и потому при ингаляции не достигает системной циркуляции. И наконец, предположение, что МФ не поступает в легкие, не находит подтверждения, так как имеются данные о высокой эффективности МФ в дозе 400 мкг у больных с астмой. Поэтому первые три версии могут в какой-то степени объяснять факт отсутствия биоступности у МФ, однако этот вопрос требует дальнейшего изучения .

Таким образом, системная биодоступность ИГКС представляет собой сумму ингаляционной и оральной биодоступности. У флунизолида и беклометазона дипропионата системная биодоступность составляет примерно 60 и 62% соответственно, что несколько превышает сумму оральной и ингаляционной биодоступности других ИГКС.

В последнее время был предложен новый препарат ИГКС — циклезонид, оральная биодоступность которого практически равна нулю . Это объясняется тем, что циклезонид является пролекарством, его афинность по отношению к ГКС-рецепторам почти в 8,5 раза ниже, чем у дексаметазона. Однако, попадая в легкие, молекула препарата подвергается действию ферментов (эстераз) и переходит в свою активную форму (афинность активной формы препарата в 12 раз выше, чем у дексаметазона). В связи с этим циклезонид лишен целого ряда нежелательных побочных реакций, связанных с попаданием ИГКС в системный кровоток.

Связь с белками плазмы крови

ИГКС имеют довольно высокую связь с белками плазмы крови (); у будесонида и флютиказона эта связь несколько выше (88 и 90%) по сравнению с флунизолидом и триамцинолоном — 80 и 71% соответственно. Обычно для проявления фармакологической активности лекарственных средств большое значение имеет уровень свободной фракции препарата в плазме крови. У современных более активных ИГКС — будесонида и ФП она составляет 12 и 10% соответственно, что несколько ниже, чем у флунизолида и ТАА — 20 и 29%. Эти данные могут свидетельствовать о том, что в проявлении активности будесонида и ФП, кроме уровня свободной фракции препаратов, большую роль играют и другие фармакокинетические свойства препаратов .

Объем распределения

Объем распределения (Vd) ИГКС указывает на степень внелегочного тканевого распределения препарата. Большой Vd свидетельствует о том, что более значительная часть препарата распределяется в периферических тканях. Однако большой Vd не может служить показателем высокой системной фармакологической активности ИГКС, так как последняя зависит от количества свободной фракции препарата, способной вступать в связь с ГКР. На уровне равновесной концентрации наибольший Vd, во много раз превышающий этот показатель у других ИГКС, выявлен у ФП (12,1 л/кг) (); в данном случае это может указывать на высокую липофильность ФП.

Липофильность

Фармакокинетические свойства ИГКС на уровне тканей преимущественно определяются их липофильностью, являющейся ключевым компонентом для проявления селективности и времени задержки препарата в тканях. Липофильность увеличивает концентрацию ИГКС в дыхательных путях, замедляет их высвобождение из тканей, увеличивает сродство и удлиняет связь с ГКР, хотя до сих пор не определена грань оптимальной липофильности ИГКС .

В наибольшей степени липофильность проявляется у ФП, далее у БДП, будесонида, а ТАА и флунизолид являются водорастворимыми препаратами . Высоколипофильные препараты — ФП, будесонид и БДП — быстрее абсорбируются из респираторного тракта и дольше задерживаются в тканях дыхательных путей по сравнению с неингаляционными ГКС — гидрокортизоном и дексаметазоном, назначаемыми ингаляционно. Этим фактом, возможно, и объясняется относительно неудовлетворительная антиастматическая активность и селективность последних . О высокой селективности будесонида свидетельствует тот факт, что его концентрация в дыхательных путях через 1,5 ч после ингаляции 1,6 мг препарата оказывается в 8 раз выше, чем в плазме крови, и это соотношение сохраняется на протяжении 1,5—4 ч после ингаляции . Другое исследование выявило большое распределение ФП в легких, так как через 6,5 ч после приема 1 мг препарата обнаруживалась высокая концентрация ФП в ткани легких и низкая в плазме, в отношении от 70:1 до 165:1.

Поэтому логично предположить, что более липофильные ИГКС могут откладываться на слизистой дыхательных путей в виде «микродепо» препаратов, что позволяет продлить их местный противовоспалительный эффект, так как для растворения кристаллов БДП и ФП в бронхиальной слизи требуется более 5—8 ч, тогда как для будесонида и флунизолида, имеющих быструю растворимость, этот показатель составляет 6 мин и менее 2 мин соответственно . Было показано, что водорастворимость кристаллов, обеспечивающая растворимость ГКС в бронхиальной слизи, является важным свойством в проявлении местной активности ИГКС .

Другим ключевым компонентом для проявления противовоспалительной активности ИГКС является способность препаратов задерживаться в тканях дыхательных путей. В исследованиях in vitro, проведенных на препаратах легочной ткани, показано, что способность ИГКС задерживаться в тканях довольно тесно коррелирует с липофильностью. У ФП и беклометазона она выше, чем у будесонида, флунизолида и гидрокортизона . В то же время в исследованиях in vivo показано, что на слизистой трахеи крыс будесонид и ФП задерживались дольше по сравнению с БДП , причем будесонид задерживался дольше, чем ФП . В первые 2 ч после интубации будесонидом, ФП, БДП и гидрокортизоном высвобождение радиоактивной метки (Ra-метки) из трахеи у будесонида было замедленным и составляло 40% против 80% у ФП и БДП и 100% у гидрокортизона. В последующие 6 ч наблюдалось дальнейшее увеличение высвобождения будесонида на 25% и БДП на 15%, в то время как у ФП дальнейшего увеличения высвобождения Ra-метки не отмечалось

Эти данные противоречат общепринятому мнению о наличии корреляции между липофильностью ИГКС и их способностью к тканевой связи, так как менее липофильный будесонид задерживается дольше, чем ФП и БДП. Данный факт следует объяснить тем, что под действием ацетил-коэнзима А и аденозина трифосфата гидроксильная группа будесонида у атома углерода в положении 21 (С-21) замещается сложным эфиром жирных кислот, то есть происходит эстерификация будесонида с образованием конъюгатов будесонида с жирными кислотами. Этот процесс протекает внутриклеточно в тканях легких и дыхательных путей и в печеночных микросомах, где идентифицированы эфиры жирных кислот (олеаты, пальмитаты и др.) . Конъюгация будесонида в дыхательных путях и легких происходит быстро, так как уже через 20 мин после применения препарата 70—80% Ra-метки определялось в виде конъюгатов и 20—30% — в виде интактного будесонида, тогда как через 24 ч определялось только 3,2% конъюгатов первоначального уровня конъюгации, причем в одинаковой пропорции они были выявлены в трахее и в легких, что свидетельствует об отсутствии неопределенных метаболитов . Конъюгаты будесонида имеют очень низкое сродство к ГКР и потому не обладают фармакологической активностью .

Внутриклеточная конъюгация будесонида с жирными кислотами может происходить во многих типах клеток, будесонид может накапливаться в неактивной, но обратимой форме. Липофильные конъюгаты будесонида образуются в легких в тех же пропорциях, что и в трахее, что указывает на отсутствие неидентифицированных метаболитов . Конъюгаты будесонида не определяются в плазме и в периферических тканях.

Конъюгированный будесонид гидролизируется внутриклеточными липазами, постепенно высвобождая фармакологически активный будесонид, что может удлинить сатурацию рецептора и пролонгировать глюкокортикоидную активность препарата.

Если будесонид приблизительно в 6—8 раз менее липофилен, чем ФП, и, соответственно, в 40 раз менее липофилен по сравнению с БДП, то липофильность конъюгатов будесонида с жирными кислотами в десятки раз превышает липофильность интактного будесонида (табл. 3), чем и объясняется длительность его пребывания в тканях дыхательных путей .

Исследования показали, что эстерификация жирной кислотой будесонида приводит к пролонгированию его противовоспалительной активности. При пульсирующем назначении будесонида было отмечено удлинение ГКС-эффекта, в отличие от ФП. В то же время в исследовании in vitro при постоянном присутствии ФП оказался в 6 раз эффективнее будесонида . Возможно, это объясняется тем, что ФП легче и быстрее извлекается из клеток, чем более конъюгированный будесонид, в результате чего примерно в 50 раз снижается концентрация ФП и, соответственно, его активность ).

Таким образом, после ингаляции будесонида в дыхательных путях и легких образуется «депо» неактивного препарата в виде обратимых конъюгатов с жирными кислотами, что может удлинить его противовоспалительную активность. Это, несомненно, имеет огромное значение для лечения больных БА. Что касается БДП, более липофильного, чем ФП (табл. 4), то время его задержки в тканях дыхательных путей короче, чем у ФП, и совпадает с этим показателем у дексаметазона, что является, по-видимому, результатом гидролиза БДП до 17-БМП и беклометазона, липофильность последнего и дексаметазона одинаковы . Более того, в исследовании in vitro длительность пребывания Ra-метки в трахее после ингаляции БДП была больше, чем после его перфузии, что связано с очень медленным растворением кристаллов БДП, откладываемых в респираторных просветах во время ингаляции .

Продолжительное фармакологическое и терапевтическое действие ИГКС объясняется связью ГКС с рецептором и образованием комплекса ГКС+ГКР. Вначале будесонид связывается с ГКР медленнее, чем ФП, но быстрее, чем дексаметазон, однако через 4 ч разница в общем количестве связи с ГКР между будесонидом и ФП не обнаруживалась, в то время как у дексаметазона она составляла только 1/3 от связанной фракции ФП и будесонида.

Диссоциация рецептора из комплекса ГКС+ГКР отличалась у будесонида и ФП, будесонид по сравнению ФП диссоцируется быстрее из комплекса. Длительность комплекса будесонид+рецептор in vitro составляет 5—6 ч, этот показатель ниже по сравнению с ФП (10 ч) и 17-БМП (8 ч) , но более высок по сравнению с дексаметазоном . Из этого следует, что различия в местной тканевой связи будесонида, ФП, БДП не определяются на уровне рецепторов, а преимущественное влияние на разницу показателей оказывают различия в степени неспецифической связи ГКС с клеточными и субклеточными мембранами.

Как было показано выше (), наибольшее сродство к ГКР имеет ФП (приблизительно в 20 раз выше, чем у дексаметазона, в 1,5 раза выше, чем у 17-БМП, и в 2 раза выше, чем у будесонида) . На сродство ИГКС к ГКС-рецептору может оказать влияние и конфигурация молекулы ГКС. Например, у будесонида его право- и левовращающие изомеры (22R и 22S) имеют не только различное сродство к ГКР, но и разную противовоспалительную активность (табл. 4).

Сродство 22R к ГКР более чем в 2 раза превосходит сродство 22S, а будесонид (22R22S) занимает в этой градации промежуточное положение, его сродство к рецептору равно 7,8, а сила подавления отека — 9,3 (параметры дексаметазона приняты за 1,0) (табл. 4).

Метаболизм

БДП быстро, в течение 10 мин, метаболизируется в печени с образованием одного активного метаболита — 17-БМП и двух неактивных — беклометазона 21-монопропионата (21-БМН) и беклометазона .

В легких из-за низкой растворимости БДП, являющейся определяющим фактором в степени образования 17-БМП из БДП, может быть замедлено образование активного метаболита. Метаболизм 17-БМП в печени происходит в 2—3 раза медленнее, чем, например, метаболизм будесонида, что может быть лимитирующим фактором перехода БДП в 17-БМП.

ТАА метаболизируется с образованием 3 неактивных метаболитов: 6β-триокситриамцинолона ацетонида, 21-карбокситриамцинолона ацетонида и 21-карбокси-6β-гидрокситриамцинолона ацетонида.

Флунизолид образует главный метаболит — 6β-гидроксифлунизолид, фармакологическая активность которого в 3 раза превосходит активность гидрокортизона и имеет Т1/2 равную 4 ч.

ФП быстро и полностью инактивируется в печени с образованием одного частично активного (1% активности ФП) метаболита — 17β-карбоксильной кислоты.

Будесонид быстро и полностью метаболизируется в печени при участии цитохрома р450 3А (CYP3A) с образованием 2 главных метаболитов: 6β-гидроксибудесонид (образует оба изомера) и 16β-гидроксипреднизолон (образует только 22R). Оба метаболита обладают слабой фармакологической активностью.

Мометазона фуроат (фармакокинетические параметры препарата изучались у 6 добровольцев после ингаляции 1000 мкг — 5 ингаляций сухой пудры с радиометкой): 11% радиометки в плазме определялось через 2,5 ч, этот показатель увеличивался до 29% через 48 ч. Экскреция радиометки с желчью составила 74% и с мочой 8%, общее количество достигало 88% через 168 ч .

Кетоконазол и циметидин могут увеличить уровень будесонида в плазме после перорально принятой дозы в результате блокады CYP3A.

Клиренс и период полувыведения

ИГКС имеют быстрый клиренс (CL), его величина примерно совпадает с величиной печеночного кровотока, и это является одной из причин минимальных проявлений системных НЭ. С другой стороны, быстрый клиренс обеспечивает ИГКС высокий терапевтический индекс. Клиренс ИГКС колеблется в пределах от 0,7 л/мин (ТАА) до 0,9—1,4 л/мин (ФП и будесонид, в последнем случае имеет место зависимость от принятой дозы). Системный клиренс для 22R составляет 1,4 л/мин и для 22S — 1,0 л/мин. Наиболее быстрый клиренс, превышающий скорость печеночного кровотока, обнаружен у БДП (150 л/ч, а по другим данным — 3,8 л/мин, или 230 л/ч) (), что дает основание предполагать наличие внепеченочного метаболизма БДП, в данном случае в легких, приводящего к образованию активного метаболита 17-БМП . Клиренс 17-БМП равняется 120 л/ч.

Период полувыведения (Т1/2) из плазмы крови зависит от объема распределения и величины системного клиренса и указывает на изменение концентрации препарата с течением времени. У ИГКС Т1/2 из плазмы крови колеблется в широких пределах — от 10 мин (БДП) до 8—14 ч (ФП) (). Т1/2 других ИГКС довольно короткий — от 1,5 до 2,8 ч (ТАА, флунизолид и будесонид) и 2,7 ч у 17-БМП . У флютиказона Т1/2 после внутривенного введения составляет 7—8 ч, в то время как после ингаляции из периферической камеры этот показатель равен 10 ч . Имеются и другие данные, например, если Т1/2 из плазмы крови после внутривенного введения был равен 2,7 (1,4—5,4) ч, то Т1/2 из периферической камеры, рассчитанный по трехфазовой модели, составлял в среднем 14,4 ч (12,5—16,7 ч), что связано с относительно быстрой абсорбцией препарата из легких — Т1/2 2 (1,6-2,5) ч по сравнению с его медленной системной элиминацией . Последняя может привести к аккумуляции препарата при длительном его применении, что было показано после семидневного назначения ФП через дискахалер в дозе 1000 мкг 2 раза в день 12 здоровым добровольцам, у которых концентрация ФП в плазме крови увеличивалась в 1,7 раза по сравнению с концентрацией после однократной дозы 1000 мкг. Аккумуляция сопровождалась увеличением подавления уровня кортизола в плазме крови (95% против 47%) .

Заключение

Биодоступность ингаляционных ГКС зависит от молекулы препарата, от системы доставки препарата в дыхательные пути, от техники ингаляции и др. При местном назначении ИГКС происходит значительно лучший захват препаратов из дыхательных путей, они дольше удерживаются в тканях дыхательных путей, обеспечивается высокая селективность препаратов, особенно флютиказона пропионата и будесонида, лучшее соотношение эффект/риск и высокий терапевтический индекс препаратов. Внутриклеточная эстерификация будесонида жирными кислотами в тканях дыхательных путей приводит к местной задержке и формированию «депо» неактивного, но медленно регенерирующего свободного будесонида. Более того, большой внутриклеточный запас конъюгированного будесонида и постепенное выделение свободного будесонида из конъюгированной формы может удлинить сатурацию рецептора и противовоспалительную активность будесонида, несмотря на его меньшее, по сравнению с флютиказоном пропионатом и беклометазоном монопропионатом, сродство к ГКС-рецептору . На сегодняшний день существуют единичные сведения о фармакокинетических исследованиях весьма перспективного и высокоэффективного препарата мометазона фуроата, у которого при отсутствии биодоступности при ингаляционном введении обнаруживаются высокая противовоспалительная активность у больных астмой.

Длительная экспозиция и замедленная сатурация рецептора обеспечивают удлинение противовоспалительной активности будесонида и флютиказона в дыхательных путях, что может служить основанием для однократного назначения препаратов.

По вопросам литературы обращайтесь в редакцию

Литература
  1. Affrime M. B., Cuss F., Padhi D. et al. Bioavailability and Metabolism of Mometasone Furoate following Administration by Metered-Dose and Dry-Powder Inhalers in Healthy Human Volunteers // J. Clin. Pharmacol. 2000: 40; 1227-1236.
  2. Barnes P. J. Inhaled glucocorticoids: new developments relevant to updating the asthma management guidelines // Respir. Med. 1996; 9: 379-384
  3. Barnes P. J., Pedersen S., Busse W. W. Efficacy and safety of inhaled corticosteroids //Am. J. Respir. Crit. Care Med 1998; 157: 51- 53
  4. Barry P. W., Callaghan C. O. Inhalation drug delivery from seven different spacer devices Thorax 1996; 51: 835-840.
  5. Borgstrom L. E, Derom E., Stahl E. et al. The inhalation device influences lung deposition and bronchodilating effect of terbutaline //Am. J. Respir. Crit. Care Med. 1996; 153: 1636-1640.
  6. Brattsand R. What factors determine antiinflammatory activity and selectivity of inhaled steroids // Eur. Respir. Rev. 1997; 7: 356-361.
  7. Daley-Yates P. T., Price A. C., Sisson J. R. et al. Beclomethasone dipropionat: absolute bioavailability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled administration in men // Br. J. Clin. Pharmacol. 2001; 51: 400-409.
  8. Derendorf H. Pharmacokinetic and pharmacodynamic properties of inhaled corticosteroids in relation to efficacy and safety // Respir. Med. 1997; 91 (Suppl. A): 22-28.
  9. Esmailpour N., Hogger P., Rabe K. F. et al. Distribution of inhaled fluticason propionate between human lung tissue and serum in vivo // Eur. Respir. J. 1997; 10: 1496-1499.
  10. Guidelines for the Diagnosis and Management of asthma. Expert panel report, № 2. National institutes of health, Bethesda, MD. (NIP Publication № 97-4051).
  11. Hogger P., Ravert J., Rohdewald P. Dissolution, tissue binding and kinetics of receptor binding of inhaled glucocorticoids // Eur. Resip. J. 1993; 6: (Suppl. 17): 584 s.
  12. Hogger P., Rohdewald P. Binding kinetics of fluticason propionate to the human glucocorticoid receptor. Steroids 1994; 59: 597-602.
  13. Hogger P., Erpenstein U., Sorg C. et al Receptor affinity, protein expression and clinical efficacy of inhaled glucocorticoids // Am. J. Respir. Crit. Care Med. 1996; 153: A 336.
  14. Jackson W. F. Nebulised Budesonid Therapy in asthma scientific and Practical Review. Oxford, 1995: 1-64.
  15. Jenner W. N., Kirkham D. J. Immunoassay of beclomethasone 17-, 21-dipropionate and metabolites. In: Reid E, Robinson JD, Wilson I, eds. Bioanalysis of drugs and metabolites, New York, 1988: 77-86.
  16. Kenyon C. J., Thorsson L., Borgstrom L. Reduction in lung deposition of budesonide pressurized aerosol resulting from static chanjge? In plastic spacer devices // Drug delivery to the lungs. 1996; 7: 17-18.
  17. Miller-Larsson A., Maltson R. H., Ohlsson D. et al. Prolonged release from the airway tissue of glucocorticods budesonile and fluticasone propionate as compared to beclomethasone dipropionate and hydrocortisone (abstract) // Am. J. Respir. Crit. Care Med. 1994; 149: A 466.
  18. Miller-Larsson A., Maltson R. H., Hjertberg E. et al. Reversible fatty acid conjugation of budesonide: novel mechanism for prolonged retention of topically applied steroid in airway tissue // Drug. metabol. Dispos. 1998; v. 26 N 7: 623-630.
  19. Pedersen S., Byrne P. O. A comparison of the efficacy and safety of inhaled corticosteroids in asthma // Eur J Allergy Clin Immunol 1997; 52 (Suppl. 39): 1-34
  20. Selroos O., Pietinalho A., Lofroos A. B., Riska A. High-dose is more effective than low-dose inhaled corticosteroids when starting medication in patients with moderately severe asthma (abstract) // Am. J. Respir. Crit. Care Med. 1997; 155: A 349.
  21. Thorsson L., Dahlstrom K., Edsbacker S et al. Pharmacokinetics and systemic effects of inhaled fluticasone propionate in healthy subjects // Br. J. Clin. Pharmacol. 1997; 43: 155-161.
  22. Thorsson L., Edsbacker S. Conradson T. B. Lung deposition of budesonide from Turbuhaler is twice that from a pressured metered-dose-inhaler p-MDI // Eur. Respir. J. 1994; 10: 1839-1844.
  23. Tood G., Danlop K. Cason D., Shields M. Adrenal suppression in asthmatic children treated with high-dose fluticason propionate (abstract) // Am. J. Respir. Crit. Care Med. 1997; 155. № 4 (part 2 of 2 parts): A 356l.
  24. Trescoli-Serrano C., Ward W. J., Garcia-Zarco M. et al. Gastroinstestinal absorbtion of inhaled budesonide and beclomethasone: has it any significant systemic effect? // Am. J. Respir. Crit. Care Med. 1995; 151 (№ 4 part 2): A 3753.
  25. Tunec A. K., Sjodin, Hallstrom G. Reversible formation of fatty acid esters of budesonide, an anti-asthma glucocorticoid, in human lung and liver microsomes // Drug. Metabolic. Dispos. 1997; 25: 1311-1317.
  26. Van den Bosch J. M., Westermann C. J. J., Edsbacker J. et al. Relationship between lung tissue and blood plasma concentrations of inhaled budesonide // Biopharm Drug. Dispos. 1993; 14: 455-459.
  27. Wieslander E., Delander E. L., Jarkelid L. et al. Pharmacological importance of the reversible fatty acid conjugation of budesonide stadied in a rat cell line in vitro // Am. J. Respir. Cell. Mol. Biol. 1998; 19: 1-9.
  28. Wurthwein G., Render S., Rodhewald P. Lipophility and receptor affinity of glucocorticoids // Pharm Ztg. Wiss. 1992; 137: 161-167.
  29. Dietzel K. et al. Ciclesonide: an On-Site-Activate Steroid // Prog. Respir. Res. Basel. Karger. 2001: v. 31; p. 91-93.

Ингаляционные глюкокортикостероиды (ИГКС)

Являются основной группой препаратов для профилактики приступов БА.

Главное преимущество - мощное местное противовоспалительное действие без выраженных системных эффектов. Как любые ГКС, действуют на ранних стадиях воспаления, нарушая выработку его медиаторов (арахидоновой кислоты, интерлейкинов, кооперацию Т - и В-лимфоцитов). Препараты стабилизируют мембраны тучных клеток, тормозят выход медиаторов из лейкоцитов, оказывают мощный противовоспалительный, противоотечный эффект, улучшают мукоцилиарный клиренс, восстанавливают чувствительность в-адренорецепторов к катехоламинам. Снижают гиперактивность бронхов, подавляют эозинофилию. Могут применяться на достаточно ранних стадиях болезни. Их можно использовать для купирования синдрома отмены системных ГКС.

Первым препаратом явился беклометазон дипропионат (бекотид, бекломет, альдецин и др.). Обычная доза беклометазона - 400-800 мкг в сутки в 4, реже - в 2 приема (1 вдох - 50 мкг). Считают, что по эффективности это соответствует примерно 15 мг преднизолона. У детей - 100-600 мкг. При нетяжелом течении БА возможно либо длительное введение сравнительно низких доз (может вызвать ремиссию на 5 и более лет), либо кратковременное - высоких. Длительное введение высоких доз проводят при более тяжелом течении. В этом случае можно применять препарат беклокорт с повышенной дозой (200 мкг в 1 вдохе) беклометазона. При применении очень высоких доз ИГКС пропорционального роста эффекта не наблюдают.

Побочные эффекты возникают редко (обычно, если суточная доза превышает 1200 мкг) и в основном носят местный характер: ротоглоточный кандидоз, чаще у пожилых (в этом случае назначают сублингвально нистатин 4 раза в день, возможно полоскание препаратами типа хлоргексидина), дисфония, видимо, за счет стероидной миопатии гортани (снизить дозу, уменьшить речевую нагрузку), кашель и раздражение слизистой дыхательных путей.

У беклометазона имеется ряд более новых аналогов:

Будесонид (пульмикорт, бенакорт) - примерно в 2-3 аза активнее беклометазона, хорошо проникает в клетки; это препарат пролонгированного действия. Будесонид - наиболее липофильный ИГКС, что повышает его задержку в слизистой бронхов. При введении с помощью небулайзера препарат может улучшить ситуацию при остром ларинготрахеобронхите у детей (ложный круп), также сопровождающемся симптомами удушья.

Минимальное системное всасывание отмечают для флутиказона пропионата (фликсотид). Мощный препарат. В связи с относительной безопасностью можно назначать до 2000 мкг в день, может быть эффективен при более тяжелом течении БА.

Первоначально назначают средние дозы, которые затем можно уменьшить или повысить, однако современная тенденция - к начальному лечению высокими (эффективными) дозами ИГКС с последующим снижением до поддерживающих. Снижают дозы на 25-50% после трех месяцев стабильного состояния больного.

ИГКС приступ астмы не снимают, не эффективны при астматическом статусе. В случае отсутствия эффекта больного начинают лечить системными ГКС по общим правилам.

Современные лекарственные средства для детей Тамара Владимировна Парийская

Ингаляционные глюкокортикоиды

Ингаляционные глюкокортикоиды

Глюкокортикоидные гормоны, применяемые в виде ингаляций, оказывают в основном местное действие, уменьшают или устраняют спазм бронхов, способствуют уменьшению отека и воспаления дыхательных путей. Применяются они при бронхиальной астме, астматическом, обструктивном бронхите наряду с другими ингаляционными бронхоспазмолитическими препаратами (вентолин, саламол, беротек и др.).

В настоящее время существуют три типа ингаляционных систем:

1. Дозированный ингалятор (МДУ) и МДУ со спейсером.

2. Порошковый ингалятор (ДРУ).

3. Небулайзер.

В небулайзере жидкость превращается в «туман» (аэрозоль) под воздействием сжатого воздуха (компрессионный небулайзер) или ультразвука (ультразвуковой небулайзер). При использовании небулайзера лекарство хорошо проникает в нижние отделы дыхательных путей и действует более эффективно. В небулайзерах применяются те же вещества, что и в других ингаляторах, но лекарства для небулайзеров выпускаются в специальных флаконах с капельницей или в пластиковых ампулах.

При назначении препаратов в виде ингаляций детям старше 3 лет мундштук ингалятора должен находиться на расстоянии 2–4 см от широко раскрытого рта. Нажатие на клапан производят во время глубокого вдоха, выдох делается через 10–20 секунд. Длительность ингаляции 5 минут. Минимальный интервал между ингаляциями – 4 часа. Длительность применения ингаляционных кортикостероидов в полной дозе в среднем составляет 3–4 недели, поддерживающая доза назначается на несколько месяцев (до 6 месяцев и более).

В справочнике представлены следующие ингаляционные глюкокортикоиды:

Альдецин Син.: Арумет; Беклазон; Беклат; Беклометазона дипропионат; Бекодиск; Беконазе; Бекотид; Плибекот 93

Беклазон 93, 135

Бекломет 137

Беконазе 93, 138

Пульмикорт 369

Фликсотид Син.: Кутивейт; Фликсоназе; Флутиказон 462

Данный текст является ознакомительным фрагментом.
В статье рассмотрены факторы, влияющие на степень эффективности и безопасности, особенности фармакодинамики и фармакокинетики современных ингаляционных глюкокортикостероидов, в том числе нового для российского рынка ингаляционного глюкокортикостероида - циклесонида.

Бронхиальная астма (БА) является хроническим воспалительным заболеванием дыхательных путей, характеризующимся обратимой бронхиальной обструкцией и гиперреактивностью бронхов. Наряду с воспалением, а возможно, и в результате восстановительных процессов в дыхательных путях формируются структурные изменения, которые рассматриваются как процесс ремоделирования бронхов (необратимая трансформация), что включает гиперплазию бокаловидных клеток и бокаловидных желез подслизистого слоя, гиперплазию и гипертрофию гладкой мускулатуры, увеличение васкуляризации подслизистого слоя, накопление коллагена в зонах, расположенных ниже базальной мембраны, и субэпителиальный фиброз.

Согласно международным (Global Initiative for Asthma - "Глобальная стратегия по лечению и профилактике бронхиальной астмы", пересмотр 2011 г.) и национальным согласительным документам ингаляционные глюкокортикостероиды (ИГКС), обладающие противовоспалительным эффектом, являются средствами первой линии в лечении среднетяжелой и тяжелой бронхиальной астмы.

Ингаляционные глюкокортикостероиды при длительном их применении улучшают или нормализуют функцию легких, уменьшаются дневные колебания пиковой скорости выдоха, а также снижается потребность в системных глюкокортикостероидах (ГКС) вплоть до полной их отмены. При длительном применении препаратов предотвращается антиген-индуцированный бронхоспазм и развитие необратимой обструкции дыхательных путей, снижаются частота обострений заболевания, число госпитализаций и смертность больных.
Механизм действия ингаляционных глюкокортикостероидов нацелен на противоаллергический и противовоспалительный эффект, в основе данного эффекта лежат молекулярные механизмы двухэтапной модели действия ГКС (геномный и внегеномный эффекты). Терапевтический эффект глюкокортикостероидов (ГКС) связан с их способностью ингибировать образование в клетках провоспалительных белков (цитокинов, оксида азота, фосфолипазы А2, молекул адгезии лейкоцитов и др.) и активировать образование белков, обладающих противовоспалительным эффектом (липокортина-1, нейтральной эндопептидазы и др.).

Местное воздействие ингаляционных глюкокортикостероидов (ИГКС) проявляется повышением количества бета-2-адренергических рецепторов на клетках гладкой мускулатуры бронхов; снижением сосудистой проницаемости, уменьшением отека и секреции слизи в бронхах, снижением числа тучных клеток в слизистой бронхов и усилением апоптоза эозинофилов; уменьшением выброса воспалительных цитокинов Т-лимфоцитами, макрофагами и эпителиальными клетками; уменьшением гипертрофии субэпителиальной мембраны и подавлением тканевой специфической и неспецифической гиперреактивности. Ингаляционные ГКС угнетают пролиферацию фибробластов и уменьшают синтез коллагена, что замедляет темпы развития склеротического процесса в стенках бронхов.

Ингаляционные глюкокортикостероиды (ИГКС) в отличие от системных обладают высокой селективностью, выраженной противовоспалительной и минимальной минералокортикоидной активностью. При ингаляционном пути введения препаратов в легких откладывается приблизительно 10-50% номинальной дозы. Процент отложения зависит от свойств молекулы ИГКС, от системы доставки препарата в дыхательные пути (тип ингалятора) и от техники ингаляции. Большая часть дозы ИГКС проглатывается, абсорбируется из желудочно-кишечного тракта (ЖКТ) и быстро метаболизируется в печени, что обеспечивает высокий терапевтический индекс ИГКС.

Ингаляционные глюкокортикостероиды (ИГКС) различаются по активности и биодоступности, что обеспечивает некоторую вариабельность клинической эффективности и выраженности побочных эффектов у разных лекарственных средств этой группы. Современные ингаляционные глюкокортикостероиды (ИГКС) обладают высокой липофильностью (для лучшего преодоления мембраны клетки), высокой степенью сродства к глюкокортикоидному рецептору (ГКР), что обеспечивает оптимальную местную противовоспалительную активность, и низкой системной биодоступностью, а следовательно, небольшой вероятностью развития системных эффектов.

При использовании разных типов ингаляторов эффективность некоторых препаратов изменяется. С увеличением дозы ИГКС противовоспалительный эффект возрастает, однако начиная с определенной дозы кривая доза-эффект приобретает вид плато, т.е. эффект от лечения не увеличивается, а вероятность развития побочных эффектов, характерных для системных глюкокортикостероидов (ГКС), возрастает. Основными нежелательными метаболическими эффектами ГКС являются:

  1. стимулирующее действие на глюконеогенез (в результате - гипергликемия и глюкозурия);
  2. снижение синтеза белка и повышение его распада, что проявляется отрицательным азотистым балансом (похудение, мышечная слабость, атрофия кожи и мышц, стрии, кровоизлияния, замедление роста у детей);
  3. перераспределение жира, повышение синтеза жирных кислот и триглицеридов (гиперхолестеринемия);
  4. минералокортикоидная активность (приводит к увеличению объема циркулирующей крови и повышению артериального давления);
  5. отрицательный баланс кальция (остеопороз);
  6. угнетение гипоталамо-гипофизарной системы, в результате чего уменьшается продукция адренокортико-тропного гормона и кортизола (надпочечниковая недостаточность).

В связи с тем, что лечение ингаляционными глюкокортикостероидами (ИГКС), как правило, носит длительный (а в некоторых случаях постоянный) характер, то закономерно увеличивается озабоченность врачей и больных относительно способности ингаляционных глюкокортикостероидов вызывать системные побочные эффекты.

Препараты содержащие ингаляционные глюкокортикостероиды

На территории Российской Федерации зарегистрированы и разрешены к применению следующие ингаляционные глюкокортикостероиды: препарат будесонид (суспензию для небулайзера применяют с 6 мес, в виде порошкового ингалятора - с 6 лет), флутиказона пропионат (применяют с 1 года), беклометазона дипропионат (применяют с 6 лет), мометазона фуроат (на территории РФ разрешен у детей с 12 лет) и циклесонид (разрешен у детей с 6 лет). Все препараты обладают доказанной эффективностью, однако различия в химической структуре отражаются на фармакодинамических и фармакокинетических свойствах ИГКС и, следовательно, на степени эффективности и безопасности препарата.

Эффективность ингаляционных глюкокортикостероидов (ИГКС) зависит прежде всего от местной активности, что определяется высокой аффинностью (сродство к глюкокортикоидному рецептору (ГКР), высокой селективностью и продолжительностью персистирования в тканях. Все известные современные ИГКС обладают высокой местной глюкокортикоидной активностью, которую определяют по сродству ИГКС к ГКР (обычно в сравнении с дексаметазоном, активность которого принимают за 100) и модифицированными фармакокинетическими свойствами.

Циклесонид (аффинность 12) и беклометазона дипропионат (аффинность 53) не обладают исходной фармакологической активностью, и только после ингаляции, попадая в органы-мишени и подвергаясь действию эстераз, они превращаются в свои активные метаболиты - дезциклесонид и беклометазона 17-монопропионат - и становятся фармакологически активными. Сродство к глюкокортикоидному рецептору (ГКР) у активных метаболитов выше (1200 и 1345 соответственно).

Высокая липофильность и активное связывание с дыхательным эпителием, а также длительность ассоциации с ГКР обусловливают продолжительность действия препарата. Липофильность увеличивает концентрацию ингаляционных глюкокортикостероидов (ИГКС) в дыхательных путях, замедляет их высвобождение из тканей, увеличивает сродство и удлиняет связь с ГКР, хотя до сих пор не определена грань оптимальной липофильности ИГКС.

В наибольшей степени липофильность проявляется у циклесонида, мометазона фуроата и флутиказона пропионата. Для циклесонида и будесонида характерна эстерификация, происходящая внутриклеточно в тканях легких, и образование обратимых конъюгатов дезциклесонида и будесонида с жирными кислотами. Липофильность конъюгатов во много десятков раз превышает липофильность интактных дезциклесонида и будесонида, что обусловливает длительность пребывания последних в тканях дыхательных путей.

Воздействие ингаляционных глюкокортикостероидов на дыхательные пути и их системное действие зависят в большей степени от используемого ингаляционного устройства. Учитывая то, что процессы воспаления и ремоделирования происходят во всех отделах дыхательных путей, включая дистальные отделы и периферические бронхиолы, встает вопрос об оптимальном способе доставки лекарственного препарата в легкие вне зависимости от состояния бронхиальной проходимости и соблюдения техники ингаляции. Предпочтительный размер частиц ингаляционного препарата, обеспечивающий равномерное распределение его в крупных и дистальных бронхах, составляет для взрослых 1,0-5,0 мкм, а для детей - 1,1-3,0 мкм.

Для уменьшения количества связанных с техникой ингаляции ошибок, влекущих за собой снижение эффективности лечения и повышение частоты и выраженности побочных эффектов, способы доставки лекарственных средств постоянно усовершенствуются. Дозированный аэрозольный ингалятор (ДАИ) можно использовать вместе со спейсером. Использование небулайзера позволяет эффективно купировать обострение бронхиальной астмы (БА) в амбулаторных условиях, снижая или отменяя необходимость в инфузионной терапии.

Согласно международному соглашению о сохранении озонового слоя земли (Монреаль, 1987), все производители ингаляционных лекарственных препаратов перешли на бесфреоновые формы дозированных аэрозольных ингаляторов (ДАИ). Новый пропеллент норфлуран (гидрофторалкан, ГФА 134а) значительно повлиял на размер частиц некоторых ингаляционных глюкокортикостероидов (ИГКС), в частности циклесонида: существенная доля частиц препарата имеет размер от 1,1 до 2,1 мкм (экстрамелкодисперсные частицы). В связи с этим ИГКС в виде ДАИ с ГФА 134а имеют самый высокий процент легочной депозиции, например, 52% для циклесонида, а его депозиция в периферических отделах легких составляет 55%.
Безопасность ингаляционных глюкокортикостероидов и вероятность развития системных эффектов определяются их системной биодоступностью (абсорбция со слизистой ЖКТ и легочная абсорбция), уровнем свободной фракции препарата в плазме крови (связь с белками плазмы) и уровнем инактивации ГКС при первичном прохождении через печень (наличие/отсутствие активных метаболитов).

Ингаляционные глюкокортикостероиды быстро всасываются в ЖКТ и дыхательных путях. На абсорбцию глюкокортикостероидов (ГКС) из легких могут оказывать влияние размеры ингалируемых частиц, так как частицы размером менее 0,3 мкм откладываются в альвеолах и всасываются в легочный кровоток.

При использовании дозированного аэрозольного ингалятора (ДАИ) только 10-20% ингалированной дозы доставляется в дыхательные пути, при этом до 90% дозы откладывается в ротоглоточной области и проглатывается. Далее эта часть ингаляционных глюкокортикостероидов (ИГКС), абсорбируясь из ЖКТ, попадает в печеночный кровоток, где большая часть препарата (до 80% и более) инактивируется. В системный кровоток ИГКС поступают преимущественно в виде неактивных метаболитов. Поэтому системная пероральная биодоступность для большинства ингаляционных глюкокортикостероидов (циклесонида, мометазона фуроата, флутиказона пропионата) очень низка, практически равна нулю.


Следует учитывать, что часть дозы ИГКС (примерно 20% номинально принятой, а в случае беклометазона дипропионата (беклометазона 17-монопропионата) - до 36%), поступая в дыхательные пути и быстро абсорбируясь, попадает в системный кровоток. Более того, эта часть дозы может вызывать внелегочные системные нежелательные эффекты, особенно при назначении высоких доз ИГКС. Немаловажное значение в этом аспекте придается типу используемого ингалятора с ИГКС, так как при вдыхании сухой пудры будесонида через Турбухалер легочное отложение препарата увеличивается в 2 раза и более по сравнению с показателем при ингаляции из ДАИ.

Для ингаляционных глюкокортикостероидов (ИГКС) с высокой фракцией ингаляционной биодоступности (будесонид, флутиказона пропионат, беклометазона 17-монопропионат) системная биодоступность может возрастать при наличии воспалительных процессов в слизистой бронхиального дерева. Это было установлено при сравнительном исследовании системных эффектов по уровню снижения кортизола в плазме крови после однократного использования будесонида и беклометазона пропионата в дозе 2 мг в 22 ч здоровыми курящими и некурящими лицами. Следует отметить, что после ингаляции будесонида уровень кортизола у курящих был на 28% ниже, чем у некурящих.

Ингаляционные глюкокортикостероиды (ИГКС) имеют довольно высокую связь с белками плазмы крови; у циклесонида и мометазона фуроата эта связь несколько выше (98-99%), чем у флутиказона пропионата, будесонида и беклометазона дипропионата (90, 88 и 87% соответственно). Ингаляционные глюкокортикостероиды (ИГКС) имеют быстрый клиренс, его величина примерно одинакова с величиной печеночного кровотока, и это является одной из причин минимальных проявлений системных нежелательных эффектов. С другой стороны, быстрый клиренс обеспечивает ИГКС высокий терапевтический индекс. Наиболее быстрый клиренс, превышающий скорость печеночного кровотока, обнаружен у дезциклесонида, что обусловливает высокий профиль безопасности препарата.

Таким образом, можно выделить основные свойства ингаляционных глюкокортикостероидов (ИГКС), от которых преимущественным образом зависят их эффективность и безопасность, особенно при длительной терапии:

  1. большая доля мелкодисперсных частиц, обеспечивающая высокую депозицию препарата в дистальных отделах легких;
  2. высокая местная активность;
  3. высокая липофильность или способность образовывать жировые конъюгаты;
  4. низкая степень абсорбции в системный кровоток, высокая связь с белками плазмы и высокий печеночный клиренс, чтобы препятствовать взаимодействию ГКС с ГКР;
  5. низкая минералокортикоидная активность;
  6. высокая комплаентность и удобство дозирования.

Циклесонид (Альвеско)

Циклесонид (Альвеско) - негалогенизированный ингаляционный глюкокортикостероид (ИГКС), является пролекарством и под действием эстераз в ткани легких превращается в фармакологически активную форму - дезциклесонид. Дезциклесонид имеет в 100 раз большее сродство к глюкокортикоидному рецептору (ГКР), чем циклесонид.

Обратимая конъюгация дезциклесонида с высоколипофильными жирными кислотами обеспечивает формирование депо препарата в легочной ткани и поддержание эффективной концентрации на протяжении 24 ч, что позволяет применять Альвеско однократно в сутки. Молекула активного метаболита характеризуется высокой аффинностью, быстрой ассоциацией и медленной диссоциацией с глюкокортикоидным рецептором (ГКР).

Наличие в качестве пропеллента норфлурана (ГФА 134а) обеспечивает существенную долю экстрамелкодисперсных частиц препарата (размер от 1,1 до 2,1 мкм) и высокую депозицию действующего вещества в мелких дыхательных путях. Учитывая то, что процессы воспаления и ремоделирования происходят во всех отделах дыхательных путей, включая дистальные отделы и периферические бронхиолы, встает вопрос об оптимальном способе доставки лекарственного препарата в легкие вне зависимости от состояния бронхиальной проходимости.

В исследовании T.W. de Vries et al. с помощью лазерного дифракционного анализа и метода разных инспираторных потоков было проведено сравнение доставленной дозы и размера частиц различных ингаляционных глюкокортикостероидов ИГКС: флутиказона пропионата 125 мкг, будесонида 200 мкг, беклометазона (ГФА) 100 мкг и циклесонида 160 мкг.

Средний аэродинамический размер частиц будесонида составил 3,5 мкм, флутиказона пропионата - 2,8 мкм, беклометазона и циклесонида - 1,9 мкм. Влажность окружающего воздуха и скорость инспираторного потока не оказывали значимого влияния на размер частиц. Циклесонид и беклометазон (ГФА) имели самую большую фракцию мелкодисперсных частиц размером от 1,1 до 3,1 мкм.

За счет того, что циклесонид является неактивным метаболитом, его пероральная биодоступность стремится к нулю, а также это позволяет избегать таких местных нежелательных эффектов, как орофарингеальный кандидоз и дисфония, что было продемонстрировано в ряде исследований.

Циклесонид и его активный метаболит дезциклесонид при попадании в системный кровоток практически полностью связываются с белками плазмы крови (98-99%). В печени дезциклесонид инактивируется ферментом СУР3А4 системы цитохрома Р450 до гидроксилированных неактивных метаболитов. Циклесонид и дезциклесонид имеют самый быстрый среди ингаляционных глюкокортикостероидов (ИГКС) клиренс (152 и 228 л/ч соответственно), его величина существенно превышает скорость печеночного кровотока и обеспечивает высокий профиль безопасности.

Вопросы безопасности ингаляционных глюкокортикостероидов (ИГКС) наиболее актуальны в педиатрической практике. В ряде международных исследований была установлена высокая клиническая эффективность и хороший профиль безопасности циклесонида. В двух идентичных многоцентровых двойных слепых плацебоконтролируемых исследованиях по изучению безопасности и эффективности Альвеско (циклесонид) принял участие 1031 ребенок в возрасте 4-11 лет. Применение циклесонида 40, 80 или 160 мкг однократно в сутки в течение 12 недель не приводило к подавлению функции гипоталамо-гипофизарно-надпочечниковой системы и изменению уровня кортизола в суточной моче (в сравнении с плацебо). В другом исследовании терапия циклесонидом в течение 6 месяцев не привела к статистически значимым различиям в скорости линейного роста у детей в активной группе лечения и группе плацебо.

Экстрадисперсный размер частиц, высокая легочная депозиция циклесонида и поддержание эффективной концентрации на протяжении 24 ч, с одной стороны, низкая пероральная биодоступность, низкий уровень свободной фракции препарата в плазме крови и быстрый клиренс - с другой, обеспечивают высокий терапевтический индекс и хороший профиль безопасности Альвеско. Длительность персистирования циклесонида в тканях обусловливает его высокую продолжительность действия и возможность однократного применения в сутки, что существенно повышает комплайнс пациента к данному препарату.

© Оксана Курбачева, Ксения Павлова